Skip to main content

Herstellung, Nachweis und Stabilität von transgenen Pflanzen

  • Chapter
  • First Online:
Gentechnik bei Pflanzen
  • 5695 Accesses

Zusammenfassung

Fast alle Pflanzenarten, darunter sehr viele Nutzpflanzen, können gentechnisch verändert werden. Dazu wurden verschiedene Verfahren entwickelt, von denen die Wichtigsten hier vorgestellt werden. Hinzu kommen Informationen über Selektionssysteme, Regeneration und Nachweis fremder DNA in transgenen Pflanzen. Schließlich werden Methoden zur Entfernung von Markergenen beschrieben.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://curia.europa.eu/jcms/jcms/p1_1217550/en/

Weiterführende Literatur

  • Adem M, Beyene D, Feyissa T (2017) Recent achievements obtained by chloroplast transformation. Plant Methods 13:30. https://doi.org/10.1186/s13007-017-0179-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandurska K, Berdowska A, Król M (2016) Transformation of medicinal plants using Agrobacterium tumefaciens. Postepy Hig Med Dosw (Online) 70:1220–1228

    Google Scholar 

  • Bock R (2015) Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology. Annu Rev Plant Biol 66:211–241

    Article  CAS  PubMed  Google Scholar 

  • Broll H, Butschke A, Zagon J (2004) Nachweis von gentechnischen Veränderungen – Möglichkeiten und Grenzen. Laborwelt 5:8–10

    Google Scholar 

  • Clark DP, Pazdernik NJ (2009) Molekulare Biotechnologie: Grundlagen und Anwendungen. Spektrum, Heidelberg

    Book  Google Scholar 

  • Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotech 20:581–586

    Article  CAS  Google Scholar 

  • Fuentes P, Armarego-Marriott T, Bock R (2018) Plastid transformation and its application in metabolic engineering. Curr Opin Biotechnol 49:10–15

    Article  CAS  PubMed  Google Scholar 

  • Kausch AP, Nelson-Vasilchik K, Hague J, Mookkan M, Quemada H, Dellaporta S, Fragoso C, Zhang ZJ (2019) Edit at will: genotype independent plant transformation in the era of advanced genomics and genome editing. Plant Sci 281:186–205. https://www.ncbi.nlm.nih.gov/pubmed/30824051

    Article  CAS  PubMed  Google Scholar 

  • Kempken F, Jung C (Hrsg) (2010) Genetic modification of plants – agriculture, horticulture and forestry. Springer, Berlin (mit zahlreichen Einzelartikeln zu verschiedenen Teilaspekten dieses Kapitels)

    Google Scholar 

  • Krenek P, Samajova O, Luptovciak I, Doskocilova A, Komis G, Samaj J (2015) Transient plant transformation mediated by Agrobacterium tumefaciens: principles, methods and applications. Biotechnol Adv 33:1024–1042

    Article  CAS  PubMed  Google Scholar 

  • Kunkel T, Niu QW, Chan YS, Chua NH (1999) Inducible isopentenyl transferase as a high-efficiency marker for plant transformation. Nat Biotechnol 17:916–919

    Article  CAS  PubMed  Google Scholar 

  • Kyndt T, Quispe D, Zhai H, Jarret R, Ghislain M, Liu Q, Gheysen G, Kreuze JF (2015) The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: an example of a naturally transgenic food crop. Proc Natl Acad Sci USA 112:5844–5849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lloyd A, Plaisier CL, Carroll D, Drews GN (2005) Targeted mutagenesis using zinc finger nucleases in Arabidopsis. Proc Natl Acad Sci USA 102:2232–2237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313

    Article  CAS  PubMed  Google Scholar 

  • Martínez de Alba AE, Elvira-Matelot E, Vaucheret H (2013) Gene silencing in plants: a diversity of pathways. Biochim Biophys Acta 1829:1300–1308. https://doi.org/10.1016/j.bbagrm.2013.10.005

    Article  CAS  PubMed  Google Scholar 

  • Moon HS, Li Y, Stewart CN (2010) Keeping the genie in the bottle: transgene biocontainment by excision in pollen. Trends Biotechnol 28:1–8

    Article  Google Scholar 

  • Petino JF, Worden A, Curlee K, Connell J, Strange Moynahan TL, Larsen C, Russell S (2010) Zinc finger nuclease-mediated transgene deletion. Plant Mol Biol 73:617–628

    Article  Google Scholar 

  • Rajeevkumar S, Anunanthini P, Sathishkumar R (2015) Epigenetic silencing in transgenic plants. Front Plant Sci 6:693. https://doi.org/10.3389/fpls.2015.00693

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao AQ, Bakhsh A, Kiani S, Shahzad K, Shahid AA, Husnain T, Riazuddin S (2009) The myth of plant transformation. Biotechnol Adv 27:753–763

    Article  PubMed  Google Scholar 

  • Scheid OM (2004) Either/or selection markers for plant transformation. Nat Biotechnol 22:398–399

    Article  Google Scholar 

  • Schröder JA, Jullien PE (2019) The diversity of plant small RNAs silencing mechanisms. Chimia (Aarau) 73:362–367. https://doi.org/10.2533/chimia.2019.362

    Article  CAS  Google Scholar 

  • Schulze M (1999) Nachweis genetischer Veränderungen. Biol Unserer Zeit 29:158–166

    Article  CAS  Google Scholar 

  • Singh RK, Prasad M (2016) Advances in Agrobacterium tumefaciens-mediated genetic transformation of graminaceous crops. Protoplasma 253:691–707

    Article  CAS  PubMed  Google Scholar 

  • Stewart CN Jr (2008) Plant biotechnology and genetics: principles, techniques, and applications. Wiley, New Jersey

    Book  Google Scholar 

  • Tabatabaei I, Dal Bosco C, Bednarska M, Ruf S, Meurer J, Bock R (2018) A highly efficient sulfadiazine selection system for the generation of transgenic plants and algae. Plant Biotechnol J 17:638–649. https://doi.org/10.1111/pbi.13004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang W, Newton RJ, Weidner DA (2007) Genetic transformation and gene silencing mediated by multiple copies of a transgene in eastern white pine. J Exp Bot 58:545–554

    Article  CAS  PubMed  Google Scholar 

  • Thieman WJ, Palladino MA (2007) Biotechnologie. Pearson Studium, München

    Google Scholar 

  • Tzfira T, Citovsky V (2006) Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr Opin Biotechnol 17:147–154

    Article  CAS  PubMed  Google Scholar 

  • Wright M, Dawson J, Dunder E, Suttie J, Reed J, Kramer C, Chang Y, Novitzky R, Wang H, Artim-Moore L (2001) Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Rep 20:429–436

    Article  CAS  PubMed  Google Scholar 

  • Yin Z, Plader W, Malepszy S (2004) Transgene inheritance in plants. J Appl Genet 45:127–144

    PubMed  Google Scholar 

  • Zubko E, Scutt C, Meyer P (2000) Intrachromosomal recombination between attP region as a tool to remove selectable marker genes from tobacco transgenes. Nat Biotechnol 18:442–445

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Kempken .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kempken, F. (2020). Herstellung, Nachweis und Stabilität von transgenen Pflanzen. In: Gentechnik bei Pflanzen. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-60744-2_3

Download citation

Publish with us

Policies and ethics