Skip to main content

Elektrifizierung des urbanen Bus- und Entsorgungsverkehrs: Potenziale, Herausforderungen und Umsetzung

  • Chapter
  • First Online:
Mobility2Grid - Sektorenübergreifende Energie- und Verkehrswende

Zusammenfassung

Bei den Betreibern des öffentlichen Personennahverkehrs (ÖPNV), als auch bei den städtischen Ver- und Entsorgungsunternehmen, besteht ein sehr großes Interesse an innovativen Konzepten zur Einführung von emissionsarmen Fahrzeugen, um in Innenstadtbereichen Luftverschmutzung und Lärmbelastung zu reduzieren. In diesem Beitrag werden die unterschiedlichen Aspekte der Planung und Einführung von elektrifizierten Flotten im urbanen Umfeld diskutiert. Es wird zunächst das Potenzial der Emissionsvermeidung durch elektrische Flotten analysiert und durch exemplarische Betrachtungen hinterlegt. Es folgt eine Vorstellung und Bewertung von Elektrifizierungskonzepten für innerstädtische Nutzfahrzeuge. Bei der Elektrifizierung großer Flotten müssen zudem die Betriebshöfe bei der Systemplanung mitberücksichtigt werden. Veränderungen im üblichen Betriebsablauf können notwendig werden und haben überdies Auswirkungen auf das Betriebshof-Layout sowie erforderliche Netzinfrastrukturen. Durch eine Smart-Grid-Integration können Synergien für Flotten- und Netzbetreiber entstehen, was prototypisch auf dem EUREF-Campus durch eine intelligente Ladestation für E-Busse erprobt wird. Der Beitrag wird durch Umsetzungsstrategien am Beispiel Berlins sowohl für den Bus- als auch für den Entsorgungsverkehr abgerundet.

Abstract

There is a great interest among operators of public transport as well as urban supply and disposal companies in innovative concepts for the introduction of low-emission vehicles in order to reduce air pollution and noise pollution in inner city areas. This article discusses the different aspects of planning and introducing electrified fleets in an urban environment. First, the potential for avoiding emissions from electric fleets is analyzed and substantiated using examples. Followed by a presentation and evaluation of electrification concepts for inner-city commercial vehicles. For large electric fleets, the depots must also be taken into account. Changes in the depot operations may become necessary and also have an impact on the depot layout and the essential network infrastructure. Smart grid integration can create synergies for fleet and network operators, which is being prototypically tested on the EUREF campus by an intelligent charging station for e-buses. The contribution ends with implementation strategies using Berlin as an example for both bus and waste disposal traffic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    55 dB Lden ist der EU-Schwellenwert für übermäßige Exposition, der einen gewichteten Durchschnitt während des Tages, des Abends und der Nacht angibt [12].

  2. 2.

    Handschallpegelmessgerät XL2 vom Hersteller NTi Audio.

  3. 3.

    Eine Schicht dauert zwischen 7 und 8 h.

  4. 4.

    Rahmenbedingungen sind detailliert in [6] beschrieben.

  5. 5.

    Preisindex des deutschen Day-Ahead-Spotmarktes (18.–19. Juni 2018).

Literatur

  1. WVI Prof. Dr. Wermuth Verkehrsforschung und Infrastrukturplanung GmbH, „Mobilitätsstudie „Kraftfahrzeugverkehr in Deutschland 2010“ (KiD 2010)“, 2012.

    Google Scholar 

  2. Europäisches Parlament, „Clean-Vehicle-Richtlinie: CVD“, 2019.

    Google Scholar 

  3. Abgeordnetenhaus von Berlin, „Berliner Mobilitätsgesetz: MobG BE“, 2018.

    Google Scholar 

  4. BMVI, „Gesetz zur Bevorrechtigung der Verwendung elektrisch betriebener Fahrzeuge: Elektromobilitätsgesetz (EmoG)“, 2015.

    Google Scholar 

  5. ZeEUS, „eBus Report 2: An updated overview of electric buses in Europe“, UITP, the International Association of Public Transport, 2017.

    Google Scholar 

  6. S. Gräbener, „Methodische Entwicklung und Bewertung von Elektrifizierungskonzepten für innerstädtische Nutzfahrzeuge“. Dissertation, 2017.

    Google Scholar 

  7. Europäische Kommission, „Nachhaltige Mobilität: Der europäische Grüne Deal“, 2019.

    Google Scholar 

  8. Umweltbundesamt, Trendtabellen Treibhausgase 1990–2017. [Online]. Verfügbar unter: https://www.umweltbundesamt.de/themen/klima-energie/treibhausgas-emissionen. Zugriff am: 22. Juli 2019.

  9. K. Müller, „Siemens City Performance Tool Berlin – Verkehr“, Berlin, 2016.

    Google Scholar 

  10. Umweltbundesamt, Stickstoffoxid (NOx, gerechnet als NO2) -Emissionen nach Quellkategorien. [Online]. Verfügbar unter: https://www.umweltbundesamt.de/daten/luft/luftschadstoff-emissionen-in-deutschland/stickstoffoxid-emissionen#entwicklung-seit-1990. Zugriff am: 3. Mai 2020.

  11. IVU Umwelt GmbH, „Flyer Screening der Luftschadstoff-Immissionen“, 2012. [Online]. Verfügbar unter: https://www.ivu-umwelt.de/upload/download/flyer/IMMISluft.flyer.1s.de.pdf. Zugriff am: 2. Juni 2020.

  12. European Environment Agency, „Noise in Europe 2014“, Luxembourg, 2014.

    Google Scholar 

  13. P. Zeller, H. Fastl und S. Kerber, „Außengeräusch“ in Handbuch Fahrzeugakustik: Grundlagen, Auslegung, Berechnung, Versuch, P. Zeller, Hg., Wiesbaden: Springer Fachmedien Wiesbaden, 2018, S. 433–450, doi: https://doi.org/10.1007/978-3-658-18520-6_14.

  14. D. Göhlich et al., „Design of urban electric bus systems“, Design Science, Jg. 4, e15, 2018, doi: https://doi.org/10.1017/dsj.2018.10.

  15. D. Göhlich, T.-A. Fay und S. Park, „Conceptual Design of Urban E-Bus Systems with Special Focus on Battery Technology“, Proc. Int. Conf. Eng. Des., Jg. 1, Nr. 1, S. 2823–2832, 2019, doi: https://doi.org/10.1017/dsi.2019.289.

  16. C. Gorbea, D. Hellenbrand, T. Srivastava, W. Biedermann und U. Lindemann, „Combatibility Matrix Methodology applied to the identification of vehicle architectures and design requirements“ in 11th International Design Conference DESIGN 2010, 2010.

    Google Scholar 

  17. A. F. Raab, E. Lauth, K. Strunz und D. Göhlich, „Implementation Schemes for Electric Bus Fleets at Depots with Optimized Energy Procurements in Virtual Power Plant Operations“, WEVJ, Jg. 10, Nr. 1, S. 5, 2019, doi: https://doi.org/10.3390/wevj10010005.

  18. G. Scholz, IT systems in public transport: Information technology for transport operators and authorities. Heidelberg: Dpunkt.verlag, 2016.

    Google Scholar 

  19. E. Lauth, P. Mundt und D. Göhlich, „Simulation-based Planning of Depots for Electric Bus Fleets considering Operations and Charging Management“ in 2019 4th IEEE International Conference on Intelligent Transportation Engineering (ICITE), 2019, doi: https://doi.org/10.1109/ICITE.2019.8880250.

  20. R. Ewert et al., „Electrification of Urban Waste Collection: Introducing a Simulation-Based Methodology for Feasibility, Impact and Cost Analysis“, 2020.

    Google Scholar 

  21. E. Lauth, A. F. Raab, P. Teske, D. Göhlich und K. Strunz, „Smart Grid Integration of Electric Buses: Implementation of a Uni- and Bidirectional Charging Infrastructure“ in Proc. International Electric Vehicle Symposium and Exhibition (EVS31), 2018.

    Google Scholar 

  22. A. F. Raab et al., „Operational Integration of Electric Bus Fleets, Charging Process Analysis, and Field Test Results“ in 2019 International Conference on Smart Energy Systems and Technologies (SEST), 2019, S. 1–7, doi: https://doi.org/10.1109/SEST.2019.8849021.

  23. D. Hesse und M. Weber, „#BerlinSteigtUm – Strategie zum Umstieg auf E-Mobilität: Die Elektrifizierung der Busflotte der Berliner Verkehrsbetriebe (BVG)“, Der Nahverkehr, Jg. 38, Nr. 6, 2020.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Göhlich, D. et al. (2021). Elektrifizierung des urbanen Bus- und Entsorgungsverkehrs: Potenziale, Herausforderungen und Umsetzung. In: Göhlich, D., Raab, A.F. (eds) Mobility2Grid - Sektorenübergreifende Energie- und Verkehrswende. Energie- und Mobilitätssysteme der Zukunft . Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-62629-0_4

Download citation

Publish with us

Policies and ethics