Skip to main content

Perspektiven der medikamentösen Tumortherapie

  • Chapter
  • First Online:
Medikamentöse Tumortherapie von Kopf-Hals-Tumoren

Zusammenfassung

Aktuell befasst sich ein Großteil der Grundlagenforschung sowie auch der klinischen Forschung (klinische Studien) mit der immunologischen Tumortherapie. Hier spielen insbesondere Fragestellungen nach einer Prädiktion des Ansprechens auf eine immunonkologische Therapie und eine Kombination dieser Therapieform mit anderen (immunmodulierenden) Wirkstoffen eine wichtige Rolle. Ebenso wird die Frage nach einer Integration in ein multimodales Therapiekonzept (Stichworte: Remissions-Induktion, kombinierte Radio-Immun-Chemotherapie) ausgiebig bearbeitet. Zielgerichtete Verfahren sind aufgrund dessen etwas in den Hintergrund getreten. Sie spielen jedoch eine besondere Rolle im Bereich der Präzisionsonkologie nach vorangegangener Tumorsequenzierung oder bei der Herstellung spezifischer T-Zellen (CART (Chimeric Antigen Receptor T-Cell) und BiTE (Bi-Specific T-Cell Engagers). Ein anderes Verfahren sich T-Zellen zu Nutze zu machen, das in klinischen Studien erprobt wird, ist der Einsatz von tumor-infiltrierenden T-Zellen (TIL). Diese werden aus einer Tumorprobe isoliert, vermehrt und dem Patienten re-infundiert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Annapragada A, Sikora A, Bollard C, Conejo-Garcia J, Cruz CR, Demehri S et al (2020) Cancer Moonshot Immuno-Oncology Translational Network (IOTN): accelerating the clinical translation of basic discoveries for improving immunotherapy and immunoprevention of cancer. J Immunother Cancer 8(1):e000796

    Article  Google Scholar 

  2. Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillere R et al (2018) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359(6371):91–97

    Article  CAS  Google Scholar 

  3. Gavrielatou N, Doumas S, Economopoulou P, Foukas PG, Psyrri A (2020) Biomarkers for immunotherapy response in head and neck cancer. Cancer Treat Rev 84:101977

    Article  CAS  Google Scholar 

  4. Oliva M, Spreafico A, Taberna M, Alemany L, Coburn B, Mesia R et al (2019) Immune biomarkers of response to immune-checkpoint inhibitors in head and neck squamous cell carcinoma. Ann Oncol 30(1):57–67

    Article  CAS  Google Scholar 

  5. Cai MC, Zhao X, Cao M, Ma P, Chen M, Wu J et al (2020) T-cell exhaustion interrelates with immune cytolytic activity to shape the inflamed tumor microenvironment. J Pathol 251(2):147–159

    Article  CAS  Google Scholar 

  6. Mishra AK, Kadoishi T, Wang X, Driver E, Chen Z, Wang XJ et al (2016) Squamous cell carcinomas escape immune surveillance via inducing chronic activation and exhaustion of CD8+ T Cells co-expressing PD-1 and LAG-3 inhibitory receptors. Oncotarget 7(49):81341–81356

    Article  Google Scholar 

  7. McKinney EF, Smith KG (2016) T cell exhaustion and immune-mediated disease-the potential for therapeutic exhaustion. Curr Opin Immunol 43:74–80

    Article  CAS  Google Scholar 

  8. Economopoulou P, de Bree R, Kotsantis I, Psyrri A (2019) Diagnostic tumor markers in head and neck squamous cell carcinoma (HNSCC) in the clinical setting. Front Oncol 9:827

    Article  Google Scholar 

  9. Cristina V, Herrera-Gomez RG, Szturz P, Espeli V, Siano M (2019) Immunotherapies and future combination strategies for head and neck squamous cell carcinoma. Int J Mol Sci 20(21):5399

    Article  CAS  Google Scholar 

  10. Lenouvel D, Gonzalez-Moles MA, Ruiz-Avila I, Gonzalez-Ruiz L, Gonzalez-Ruiz I, Ramos-Garcia P (2020) Prognostic and clinicopathological significance of PD-L1 overexpression in oral squamous cell carcinoma: a systematic review and comprehensive meta-analysis. Oral Oncol 106:104722

    Article  CAS  Google Scholar 

  11. Lenouvel D, Gonzalez-Moles MA, Talbaoui A, Ramos-Garcia P, Gonzalez-Ruiz L, Ruiz-Avila I et al (2020) An update of knowledge on PD-L1 in head and neck cancers: physiologic, prognostic and therapeutic perspectives. Oral Dis 26(3):511–526

    Article  Google Scholar 

  12. Kim HS, Lee JY, Lim SH, Park K, Sun JM, Ko YH et al (2016) Association between PD-L1 and HPV status and the prognostic value of PD-L1 in oropharyngeal squamous cell carcinoma. Cancer Res Treat 48(2):527–536

    Article  CAS  Google Scholar 

  13. Lin YM, Sung WW, Hsieh MJ, Tsai SC, Lai HW, Yang SM et al (2015) High PD-L1 expression correlates with metastasis and poor prognosis in oral squamous cell carcinoma. PLoS One 10(11):e0142656

    Article  Google Scholar 

  14. Pai SI, Cohen EEW, Lin D, Fountzilas G, Kim ES, Mehlhorn H et al (2019) SUPREME-HN: a retrospective biomarker study assessing the prognostic value of PD-L1 expression in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck. J Transl Med 17(1):429

    Article  CAS  Google Scholar 

  15. Yang WF, Wong MCM, Thomson PJ, Li KY, Su YX (2018) The prognostic role of PD-L1 expression for survival in head and neck squamous cell carcinoma: a systematic review and meta-analysis. Oral Oncol 86:81–90

    Article  CAS  Google Scholar 

  16. Lilja-Fischer JK, Eriksen JG, Georgsen JB, Vo TT, Larsen SR, Cheng J et al (2020) Prognostic impact of PD-L1 in oropharyngeal cancer after primary curative radiotherapy and relation to HPV and tobacco smoking. Acta Oncol 59(6):666–672

    Article  CAS  Google Scholar 

  17. Lyu X, Zhang M, Li G, Jiang Y, Qiao Q (2019) PD-1 and PD-L1 expression predicts radiosensitivity and clinical outcomes in head and neck cancer and is associated with HPV infection. J Cancer 10(4):937–948

    Article  CAS  Google Scholar 

  18. Solomon B, Young RJ, Bressel M, Urban D, Hendry S, Thai A et al (2018) Prognostic significance of PD-L1(+) and CD8(+) immune cells in HPV(+) oropharyngeal squamous cell carcinoma. Cancer Immunol Res 6(3):295–304

    Article  CAS  Google Scholar 

  19. Rasmussen JH, Lelkaitis G, Hakansson K, Vogelius IR, Johannesen HH, Fischer BM et al (2019) Intratumor heterogeneity of PD-L1 expression in head and neck squamous cell carcinoma. Br J Cancer 120(10):1003–1006

    Article  Google Scholar 

  20. Marabelle A, Fakih M, Lopez J, Shah M, Shapira-Frommer R, Nakagawa K et al (2020) Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol Oct 21(10):1353–1365. https://doi.org/10.1016/S1470-2045(20)30445-9

  21. Brown SD, Warren RL, Gibb EA, Martin SD, Spinelli JJ, Nelson BH et al (2014) Neo-antigens predicted by tumor genome meta-analysis correlate with increased patient survival. Genome Res 24(5):743–750

    Article  CAS  Google Scholar 

  22. McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK et al (2016) Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351(6280):1463–1469

    Article  CAS  Google Scholar 

  23. Cohen EEW, Bell RB, Bifulco CB, Burtness B, Gillison ML, Harrington KJ et al (2019) The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of squamous cell carcinoma of the head and neck (HNSCC). J Immunother Cancer 7(1):184

    Article  Google Scholar 

  24. Lecerf C, Kamal M, Vacher S, Chemlali W, Schnitzler A, Morel C et al (2019) Immune gene expression in head and neck squamous cell carcinoma patients. Eur J Cancer 121:210–223

    Article  CAS  Google Scholar 

  25. Meehan K, Leslie C, Lucas M, Jacques A, Mirzai B, Lim J et al (2020) Characterization of the immune profile of oral tongue squamous cell carcinomas with advancing disease. Cancer Med 9(13):4791–4807

    Article  CAS  Google Scholar 

  26. Baghban R, Roshangar L, Jahanban-Esfahlan R, Seidi K, Ebrahimi-Kalan A, Jaymand M et al (2020) Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal 18(1):59

    Article  Google Scholar 

  27. Garris CS, Luke JJ (2020) Dendritic cells, the T-cell-inflamed tumor microenvironment, and immunotherapy treatment response. Clin Cancer Res 26(15):3901–3907

    Article  CAS  Google Scholar 

  28. Perez-Romero K, Rodriguez RM, Amedei A, Barcelo-Coblijn G, Lopez DH (2020) Immune landscape in tumor microenvironment: implications for biomarker development and immunotherapy. Int J Mol Sci 21(15):5521

    Article  CAS  Google Scholar 

  29. Jiang M, Chen P, Wang L, Li W, Chen B, Liu Y et al (2020) cGAS-STING, an important pathway in cancer immunotherapy. J Hematol Oncol 13(1):81

    Article  Google Scholar 

  30. Outh-Gauer S, Morini A, Tartour E, Lepine C, Jung AC, Badoual C (2020) The microenvironment of head and neck cancers: papillomavirus involvement and potential impact of immunomodulatory treatments. Head Neck Pathol 14(2):330–340

    Article  Google Scholar 

  31. Topalian SL, Drake CG, Pardoll DM (2012) Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol 24(2):207–212

    Article  CAS  Google Scholar 

  32. Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ, Cowey CL et al (2017) Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 377(14):1345–1356

    Article  CAS  Google Scholar 

  33. Wolchok JD, Rollin L, Larkin J (2017) Nivolumab and ipilimumab in advanced melanoma. N Engl J Med 377(25):2503–2504

    Article  Google Scholar 

  34. Le X, Ferrarotto R, Wise-Draper T, Gillison M (2020) Evolving role of immunotherapy in recurrent metastatic head and neck cancer. J Natl Compr Cancer Netw 18(7):899–906

    Article  CAS  Google Scholar 

  35. Strauss J, Gatti-Mays ME, Redman J, Madan RA, Lamping E, Manu M et al (2018) Safety and activity of M7824, a bifunctional fusion protein targeting PD-L1 and TGF-β, in patients with HPV associated cancers. J Clin Oncol 36(15 Suppl):3007

    Article  Google Scholar 

  36. Strauss J, Gatti-Mays ME, Cho B, Salas S, McClay E, Redman J et al (2019) Abstract CT075: phase I evaluation of M7824, a bifunctional fusion protein targeting TGF-β and PD-L1, in patients with human papillomavirus (HPV)-associated malignancies. Cancer Res 79(13 Suppl):CT075

    Article  Google Scholar 

  37. Taylor MH, Rasco DW, Brose MS, Vogelzang NJ, Richey SL, Cohn AL et al (2018) A phase 1b/2 trial of lenvatinib plus pembrolizumab in patients with squamous cell carcinoma of the head and neck. J Clin Oncol 36(15 Suppl):6016

    Article  Google Scholar 

  38. Karam SD, Raben D (2019) Radioimmunotherapy for the treatment of head and neck cancer. Lancet Oncol 20(8):e404–ee16

    Article  CAS  Google Scholar 

  39. Manukian G, Bar-Ad V, Lu B, Argiris A, Johnson JM (2019) Combining radiation and immune checkpoint blockade in the treatment of head and neck squamous cell carcinoma. Front Oncol 9:122

    Article  Google Scholar 

  40. Finlay BB, Goldszmid R, Honda K, Trinchieri G, Wargo J, Zitvogel L (2020) Can we harness the microbiota to enhance the efficacy of cancer immunotherapy? Nat Rev Immunol Sep 20(9):522–528. https://doi.org/10.1038/s41577-020-0374-6

  41. Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA et al (2013) Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342(6161):967–970

    Article  CAS  Google Scholar 

  42. Wang C, Dickie J, Sutavani RV, Pointer C, Thomas GJ, Savelyeva N (2018) Targeting head and neck cancer by vaccination. Front Immunol 9:830

    Article  Google Scholar 

  43. Glisson B, Massarelli E, William WN, Johnson FM, Kies MS, Ferrarotto R et al (2017) Nivolumab and ISA 101 HPV vaccine in incurable HPV-16+ cancer. Ann Oncol 28:v403–v4v4

    Article  Google Scholar 

  44. Massarelli E, William W, Johnson F, Kies M, Ferrarotto R, Guo M et al (2019) Combining immune checkpoint blockade and tumor-specific vaccine for patients with incurable human papillomavirus 16-related cancer: a phase 2 clinical trial. JAMA Oncol 5(1):67–73

    Article  Google Scholar 

  45. Ahmed J, Chard LS, Yuan M, Wang J, Howells A, Li Y et al (2020) A new oncolytic V accinia virus augments antitumor immune responses to prevent tumor recurrence and metastasis after surgery. J Immunother Cancer 8(1):e000415

    Article  Google Scholar 

  46. Ruhl J, Leung CS, Munz C (2020) Vaccination against the Epstein-Barr virus. Cell Mol Life Sci Nov 77(21):4315–4324. https://doi.org/10.1007/s00018-020-03538-3

  47. Si Y, Deng Z, Lan G, Du H, Wang Y, Si J et al (2016) The safety and immunological effects of rAd5-EBV-LMP2 vaccine in nasopharyngeal carcinoma patients: a phase I clinical trial and two-year follow-up. Chem Pharm Bull (Tokyo) 64(8):1118–1123

    Article  CAS  Google Scholar 

  48. Taylor GS, Jia H, Harrington K, Lee LW, Turner J, Ladell K et al (2014) A recombinant modified vaccinia ankara vaccine encoding Epstein–Barr Virus (EBV) target antigens: a phase I trial in UK patients with EBV-positive cancer. Clin Cancer Res 20(19):5009–5022

    Article  CAS  Google Scholar 

  49. Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T (2014) Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer 14(2):135–146

    Article  CAS  Google Scholar 

  50. Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348(6230):69–74

    Article  CAS  Google Scholar 

  51. Bright RK, Bright JD, Byrne JA (2014) Overexpressed oncogenic tumor-self antigens. Hum Vaccin Immunother 10(11):3297–3305

    Article  Google Scholar 

  52. Roudko V, Greenbaum B, Bhardwaj N (2020) Computational prediction and validation of tumor-associated neoantigens. Front Immunol 11:27

    Article  CAS  Google Scholar 

  53. Overwijk WW, Wang E, Marincola FM, Rammensee H-G, Restifo NP, for the Organizing Committee of the SWoPI (2013) Mining the mutanome: developing highly personalized Immunotherapies based on mutational analysis of tumors. J ImmunoTher Cancer 1(1):11

    Article  Google Scholar 

  54. Sahin U, Derhovanessian E, Miller M, Kloke B-P, Simon P, Löwer M et al (2017) Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547(7662):222–226

    Article  CAS  Google Scholar 

  55. Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ et al (2017) An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547(7662):217–221

    Article  CAS  Google Scholar 

  56. Rodriguez Perez A, Campillo-Davo D, Van Tendeloo VFI, Benitez-Ribas D (2020) Cellular immunotherapy: a clinical state-of-the-art of a new paradigm for cancer treatment. Clin Transl Oncol Nov; 22(11):1923–1937. https://doi.org/10.1007/s12094-020-02344-4

  57. Coley WB (1991) The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. 1893. Clin Orthop Relat Res 262:3–11

    Google Scholar 

  58. Li H, Yu J, Wu Y, Shao B, Wei X (2020) In situ antitumor vaccination: targeting the tumor microenvironment. J Cell Physiol 235(7-8):5490–5500

    Article  CAS  Google Scholar 

  59. Zbar B, Canti G, Rapp HJ, Bier J, Borsos T (1979) Regression of established oral tumors after intralesional injection of living BCG or BCG cell walls. Cancer 43(4):1304–1307

    Article  CAS  Google Scholar 

  60. Locht C (2016) [Tuberculosis, a story still relevant]. Med Sci (Paris) 32(6–7):535–536

    Google Scholar 

  61. Calmette A, Guérin C, Nègre L, Boquet A (1926) Prémunition des nouveaux-nés contre la tuberculose par le vaccin BCG, 1921–1926. Ann Inst Pasteur (Paris) 40:89–133

    Google Scholar 

  62. Amarante-Mendes GP, Adjemian S, Branco LM, Zanetti LC, Weinlich R, Bortoluci KR (2018) Pattern recognition receptors and the host cell death molecular machinery. Front Immunol 9:2379

    Article  Google Scholar 

  63. Bull C, Boltje TJ, Balneger N, Weischer SM, Wassink M, van Gemst JJ et al (2018) Sialic acid blockade suppresses tumor growth by enhancing t-cell-mediated tumor immunity. Cancer Res 78(13):3574–3588

    Article  CAS  Google Scholar 

  64. Humbert M, Guery L, Brighouse D, Lemeille S, Hugues S (2018) Intratumoral CpG-B promotes antitumoral neutrophil, cDC, and T-cell cooperation without reprograming tolerogenic pDC. Cancer Res 78(12):3280–3292

    Article  CAS  Google Scholar 

  65. Bhatia S, Miller NJ, Lu H, Longino NV, Ibrani D, Shinohara MM et al (2019) Intratumoral G100, a TLR4 agonist, induces antitumor immune responses and tumor regression in patients with merkel cell carcinoma. Clin Cancer Res 25(4):1185–1195

    Article  CAS  Google Scholar 

  66. Rook AH, Gelfand JM, Wysocka M, Troxel AB, Benoit B, Surber C et al (2015) Topical resiquimod can induce disease regression and enhance T-cell effector functions in cutaneous T-cell lymphoma. Blood 126(12):1452–1461

    Article  CAS  Google Scholar 

  67. Sharma Y, Bala K (2020) Role of Toll like receptor in progression and suppression of oral squamous cell carcinoma. Oncol Rev 14(1):456

    Article  CAS  Google Scholar 

  68. Irenaeus SMM, Nielsen D, Ellmark P, Yachnin J, Deronic A, Nilsson A et al (2019) First-in-human study with intratumoral administration of a CD40 agonistic antibody, ADC-1013, in advanced solid malignancies. Int J Cancer 145(5):1189–1199

    Article  CAS  Google Scholar 

  69. Zheng M, Huang J, Tong A, Yang H (2019) Oncolytic viruses for cancer therapy: barriers and recent advances. Mol Ther Oncolytics 15:234–247

    Article  Google Scholar 

  70. Bommareddy PK, Shettigar M, Kaufman HL (2018) Integrating oncolytic viruses in combination cancer immunotherapy. Nat Rev Immunol 18(8):498–513

    Article  CAS  Google Scholar 

  71. Sivanandam V, LaRocca CJ, Chen NG, Fong Y, Warner SG (2019) Oncolytic viruses and immune checkpoint inhibition: the best of both worlds. Mol Ther Oncolytics 13:93–106

    Article  CAS  Google Scholar 

  72. Ribas A, Dummer R, Puzanov I, VanderWalde A, Andtbacka RHI, Michielin O et al (2017) Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell 170(6):1109–19 e10

    Article  CAS  Google Scholar 

  73. Roulstone V, Pedersen M, Kyula J, Mansfield D, Khan AA, McEntee G et al (2015) BRAF- and MEK-targeted small molecule inhibitors exert enhanced antimelanoma effects in combination with oncolytic reovirus through ER stress. Mol Ther 23(5):931–942

    Article  CAS  Google Scholar 

  74. O’Cathail SM, Pokrovska TD, Maughan TS, Fisher KD, Seymour LW, Hawkins MA (2017) Combining oncolytic adenovirus with radiation-a paradigm for the future of radiosensitization. Front Oncol 7:153

    Article  Google Scholar 

  75. Tanoue K, Rosewell Shaw A, Watanabe N, Porter C, Rana B, Gottschalk S et al (2017) Armed oncolytic adenovirus-expressing PD-L1 mini-body enhances antitumor effects of chimeric antigen receptor T cells in solid tumors. Cancer Res 77(8):2040–2051

    Article  CAS  Google Scholar 

  76. Ajina A, Maher J (2017) Prospects for combined use of oncolytic viruses and CAR T-cells. J Immunother Cancer 5(1):90

    Article  Google Scholar 

  77. Woo Y, Reid V, Kelly KJ, Carlson D, Yu Z, Fong Y (2020) Oncolytic herpes simplex virus prevents premalignant lesions from progressing to cancer. Mol Ther Oncolytics 16:1–6

    Article  CAS  Google Scholar 

  78. Tanaka Y, Araki K, Tanaka S, Miyagawa Y, Suzuki H, Kamide D et al (2019) Sentinel lymph node-targeted therapy by oncolytic sendai virus suppresses micrometastasis of head and neck squamous cell carcinoma in an orthotopic nude mouse model. Mol Cancer Ther 18(8):1430–1438

    Article  CAS  Google Scholar 

  79. Bryant CE, Sutherland S, Kong B, Papadimitrious MS, Fromm PD, Hart DNJ (2019) Dendritic cells as cancer therapeutics. Semin Cell Dev Biol 86:77–88

    Article  CAS  Google Scholar 

  80. Gardner A, de Mingo PA, Ruffell B (2020) Dendritic cells and their role in immunotherapy. Front Immunol 11:924

    Article  CAS  Google Scholar 

  81. Salazar LG, Lu H, Reichow JL, Childs JS, Coveler AL, Higgins DM et al (2017) Topical imiquimod plus nab-paclitaxel for breast cancer cutaneous metastases: a phase 2 clinical trial. JAMA Oncol 3(7):969–973

    Article  Google Scholar 

  82. Adams S, O’Neill DW, Nonaka D, Hardin E, Chiriboga L, Siu K et al (2008) Immunization of malignant melanoma patients with full-length NY-ESO-1 protein using TLR7 agonist imiquimod as vaccine adjuvant. J Immunol 181(1):776–784

    Article  CAS  Google Scholar 

  83. Ramanjulu JM, Pesiridis GS, Yang J, Concha N, Singhaus R, Zhang SY et al (2018) Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature 564(7736):439–443

    Article  CAS  Google Scholar 

  84. Broz ML, Binnewies M, Boldajipour B, Nelson AE, Pollack JL, Erle DJ et al (2014) Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 26(5):638–652

    Article  CAS  Google Scholar 

  85. Hammerich L, Marron TU, Upadhyay R, Svensson-Arvelund J, Dhainaut M, Hussein S et al (2019) Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination. Nat Med 25(5):814–824

    Article  CAS  Google Scholar 

  86. Hegde S, Krisnawan VE, Herzog BH, Zuo C, Breden MA, Knolhoff BL et al (2020) Dendritic cell paucity leads to dysfunctional immune surveillance in pancreatic cancer. Cancer Cell 37(3):289–307 e9

    Article  CAS  Google Scholar 

  87. Salmon H, Idoyaga J, Rahman A, Leboeuf M, Remark R, Jordan S et al (2016) Expansion and activation of CD103(+) dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity 44(4):924–938

    Article  CAS  Google Scholar 

  88. Baldin AV, Savvateeva LV, Bazhin AV, Zamyatnin AA Jr (2020) Dendritic cells in anticancer vaccination: rationale for ex vivo loading or in vivo targeting. Cancers (Basel) 12(3):590

    Article  CAS  Google Scholar 

  89. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363(5):411–422

    Article  CAS  Google Scholar 

  90. Duraiswamy J, Kaluza KM, Freeman GJ, Coukos G (2013) Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors. Cancer Res 73(12):3591–3603

    Article  CAS  Google Scholar 

  91. Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST et al (1988) Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med 319(25):1676–1680

    Article  CAS  Google Scholar 

  92. Rammensee HG, Loffler MW, Walz JS, Bokemeyer C, Haen SP, Gouttefangeas C (2020) [Tumor vaccines-therapeutic vaccination against cancer]. Internist (Berl) 61(7):690–698

    Google Scholar 

  93. Huemer F, Leisch M, Geisberger R, Melchardt T, Rinnerthaler G, Zaborsky N et al (2020) Combination strategies for immune-checkpoint blockade and response prediction by artificial intelligence. Int J Mol Sci 21(8):2856

    Article  CAS  Google Scholar 

  94. Boegel S, Castle JC, Kodysh J, O’Donnell T, Rubinsteyn A (2019) Bioinformatic methods for cancer neoantigen prediction. Prog Mol Biol Transl Sci 164:25–60

    Article  CAS  Google Scholar 

  95. Haen SP, Loffler MW, Rammensee HG, Brossart P (2020) Towards new horizons: characterization, classification and implications of the tumour antigenic repertoire. Nat Rev Clin Oncol Oct 17(10):595–610. https://doi.org/10.1038/s41571-020-0387-x

  96. Hong M, Clubb JD, Chen YY (2020) Engineering CAR-T cells for next-generation cancer therapy. Cancer Cell Oct 12;38(4):473–488. https://doi.org/10.1016/j.ccell.2020.07.005

  97. Freitag F, Maucher M, Riester Z, Hudecek M (2020) New targets and technologies for CAR-T cells. Curr Opin Oncol Sep 32(5):510–517. https://doi.org/10.1097/CCO.0000000000000653

  98. Brinkmann U, Kontermann RE (2017) The making of bispecific antibodies. MAbs 9(2):182–212

    Article  CAS  Google Scholar 

  99. Suurs FV, Lub-de Hooge MN, de Vries EGE, de Groot DJA (2019) A review of bispecific antibodies and antibody constructs in oncology and clinical challenges. Pharmacol Ther 201:103–119

    Article  CAS  Google Scholar 

  100. Chames P, Baty D (2009) Bispecific antibodies for cancer therapy: the light at the end of the tunnel? MAbs 1(6):539–547

    Article  Google Scholar 

  101. Fayette J, Wirth L, Oprean C, Udrea A, Jimeno A, Rischin D et al (2016) Randomized phase II study of duligotuzumab (MEHD7945A) vs. cetuximab in squamous cell carcinoma of the head and neck (MEHGAN study). Front Oncol 6:232

    Article  Google Scholar 

  102. Wu Z, Cheung NV (2018) T cell engaging bispecific antibody (T-BsAb): from technology to therapeutics. Pharmacol Ther 182:161–175

    Article  CAS  Google Scholar 

  103. Dahlen E, Veitonmaki N, Norlen P (2018) Bispecific antibodies in cancer immunotherapy. Ther Adv Vaccines Immunother 6(1):3–17

    Article  CAS  Google Scholar 

  104. Ross SL, Sherman M, McElroy PL, Lofgren JA, Moody G, Baeuerle PA et al (2017) Bispecific T cell engager (BiTE(R)) antibody constructs can mediate bystander tumor cell killing. PLoS One 12(8):e0183390

    Article  Google Scholar 

  105. Krupka C, Kufer P, Kischel R, Zugmaier G, Lichtenegger FS, Kohnke T et al (2016) Blockade of the PD-1/PD-L1 axis augments lysis of AML cells by the CD33/CD3 BiTE antibody construct AMG 330: reversing a T-cell-induced immune escape mechanism. Leukemia 30(2):484–491

    Article  CAS  Google Scholar 

  106. Dovedi SJ, Mazor Y, Elder M, Hasani S, Wang B, Mosely S et al (2018) Abstract 2776: MEDI5752: a novel bispecific antibody that preferentially targets CTLA-4 on PD-1 expressing T-cells. Cancer Res 78(13 Suppl):2776

    Article  Google Scholar 

  107. Moek KL, de Groot DJA, de Vries EGE, Fehrmann RSN (2017) The antibody-drug conjugate target landscape across a broad range of tumour types. Ann Oncol 28(12):3083–3091

    Article  CAS  Google Scholar 

  108. van Boxtel W, Lutje S, van Engen-van Grunsven ICH, Verhaegh GW, Schalken JA, Jonker MA et al (2020) (68)Ga-PSMA-HBED-CC PET/CT imaging for adenoid cystic carcinoma and salivary duct carcinoma: a phase 2 imaging study. Theranostics 10(5):2273–2283

    Article  Google Scholar 

  109. Yu S, Li A, Liu Q, Yuan X, Xu H, Jiao D et al (2017) Recent advances of bispecific antibodies in solid tumors. J Hematol Oncol 10(1):155

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urs Müller-Richter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Der/die Autor(en), exklusiv lizenziert an Springer-Verlag GmbH, DE, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Müller-Richter, U., Göbeler, M.E., Sayehli, C.M., Einsele, H. (2022). Perspektiven der medikamentösen Tumortherapie. In: Müller-Richter, U. (eds) Medikamentöse Tumortherapie von Kopf-Hals-Tumoren. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-62808-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-62808-9_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-62807-2

  • Online ISBN: 978-3-662-62808-9

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics