Skip to main content

Fraud and Data Availability Proofs: Detecting Invalid Blocks in Light Clients

  • Conference paper
  • First Online:
Financial Cryptography and Data Security (FC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12675))

Included in the following conference series:

Abstract

Light clients, also known as Simple Payment Verification (SPV) clients, are nodes which only download a small portion of the data in a blockchain, and use indirect means to verify that a given chain is valid. Instead of validating blocks, they assume that the chain favoured by the blockchain’s consensus algorithm only contains valid blocks, and that the majority of block producers are honest. By allowing such clients to receive fraud proofs generated by fully validating nodes that show that a block violates the protocol rules, and combining this with probabilistic sampling techniques to verify that all of the data in a block actually is available to be downloaded so that fraud can be detected, we can eliminate the honest-majority assumption for block validity, and instead make much weaker assumptions about a minimum number of honest nodes that rebroadcast data. Fraud and data availability proofs are key to enabling on-chain scaling of blockchains while maintaining a strong assurance that on-chain data is available and valid. We present, implement, and evaluate a fraud and data availability proof system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/musalbas/rsmt2d".

References

  1. Al-Bassam, M., Sonnino, A., Bano, S., Hrycyszyn, D., Danezis, G.: Chainspace: A sharded smart contracts platform. In: Proceedings of the Network and Distributed System Security Symposium (NDSS) (2018)

    Google Scholar 

  2. Antonopoulos, A.M.: Mastering bitcoin: unlocking digital crypto-currencies. O’Reilly Media Inc. 1st edn. (2014)

    Google Scholar 

  3. Bano, S., Sonnino, A., Al-Bassam, M., Azouvi, S., McCorry, P., Meiklejohn, S., Danezis, G.: Consensus in the age of blockchains. CoRR abs/1711.03936 (2017). https://arxiv.org/abs/1711.03936

  4. Bitcoin Wallet Developers: Bitcoin wallet - apps on Google Play (2018). https://play.google.com/store/apps/details?id=de.schildbach.wallet

  5. Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Randomized gossip algorithms. IEEE Trans. Inf. Theory 52(6), 2508–2530 (2006)

    Google Scholar 

  6. Burshtein, D., Miller, G.: Asymptotic enumeration methods for analyzing ldpc codes. IEEE Trans. Inf. Theory 50(6), 1115–1131 (2004). https://doi.org/10.1109/TIT.2004.828064

  7. Buterin, V.: Ethereum: the ultimate smart contract and decentralized application platform (white paper) (2013). http://web.archive.org/web/20131228111141/vbuterin.com/ethereum.html

  8. Buterin, V.: Ethereum sharding FAQs (2018). https://github.com/ethereum/wiki/wiki/Sharding-FAQs/c54cf1b520b0bd07468bee6950cda9a2c4ab4982

  9. Cachin, C., Tessaro, S.: Asynchronous verifiable information dispersal. In: 24th IEEE Symposium on Reliable Distributed Systems (SRDS’05), pp. 191–201. IEEE (2005)

    Google Scholar 

  10. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital pseudonyms. Commun. ACM 24(2), 84–90 (1981)

    Google Scholar 

  11. Dahlberg, R., Pulls, T., Peeters, R.: Efficient sparse merkle trees. In: Brumley, B., Röning, J. (eds.) NordSec 2016. LNCS, vol. 10014, pp. 199–215. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47560-8_13

  12. Dudáček, L., Veřtát, I.: Multidimensional parity check codes with short block lengths. In: Telecommunications Forum (TELFOR), 2016 24th, pp. 1–4. IEEE (2016)

    Google Scholar 

  13. Elias, P.: Error-free coding. Trans. IRE Prof. Group Inf. Theory 4(4), 29–37 (1954)

    Google Scholar 

  14. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. J. ACM (JACM) 32(2), 374–382 (1985)

    Google Scholar 

  15. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on Bitcoin’s peer-to-peer network. In: 24th USENIX Security Symposium (USENIX Security 15), pp. 129–144. USENIX Association, Washington, D.C. (2015). https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman

  16. Karlo, T.: Ending Bitcoin support (2018). https://stripe.com/blog/ending-Bitcoin-support

  17. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_12

  18. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B.: OmniLedger: a secure, scale-out, decentralized ledger via sharding. In: Proceedings of IEEE Symposium on Security and Privacy. IEEE (2018)

    Google Scholar 

  19. Laurie, B., Kasper, E.: Revocation transparency (2012). https://www.links.org/files/RevocationTransparency.pdf

  20. Lin, S.J., Chung, W.H., Han, Y.S.: Novel polynomial basis and its application to Reed-Solomon erasure codes. In: Proceedings of the 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, pp. 316–325. FOCS ’14, IEEE Computer Society, Washington, DC, USA (2014). https://doi.org/10.1109/FOCS.2014.41, http://dx.doi.org/10.1109/FOCS.2014.41

  21. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A secure sharding protocol for open blockchains. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 17–30. CCS ’16, ACM, New York, NY, USA (2016). https://doi.org/10.1145/2976749.2978389

  22. Marshall, A.: Bitcoin scaling problem, explained (2017). https://cointelegraph.com/explained/Bitcoin-scaling-problem-explained

  23. Maxwell, G.: (2017). https://botbot.me/freenode/bitcoin-wizards/2017-02-01/?msg=80297226&page=2

  24. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). http://bitcoin.org/bitcoin.pdf

  25. Orland, K.: Your Bitcoin is no good here–Steam stops accepting cryptocurrency (2017). https://arstechnica.com/gaming/2017/12/steam-drops-Bitcoin-payment-option-citing-fees-and-volatility/

  26. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asynchronous networks. In: Coron, J.S.ébastien., Nielsen, J. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6_22

  27. Perard, D., Lacan, J., Bachy, Y., Detchart, J.: Erasure code-based low storage blockchain node. In: IEEE International Conference on Blockchain (2018)

    Google Scholar 

  28. Peterson, W.W., Wesley, W., Weldon Jr Peterson, E., Weldon, E., Weldon, E.: Error-correcting codes. MIT Press (1972)

    Google Scholar 

  29. Ranvier, J.: Improving the ability of SPV clients to detect invalid chains (2017). https://gist.github.com/justusranvier/451616fa4697b5f25f60

  30. Reed, I., Scholtz, R., Truong, T.K., Welch, L.: The fast decoding of Reed-Solomon codes using Fermat theoretic transforms and continued fractions. IEEE Trans. Inf. Theory 24(1), 100–106 (1978). https://doi.org/10.1109/TIT.1978.1055816

  31. Saints, K., Heegard, C.: Algebraic-geometric codes and multidimensional cyclic codes: a unified theory and algorithms for decoding using Grobner bases. IEEE Trans. Inf. Theory 41(6), 1733–1751 (1995)

    Google Scholar 

  32. Shea, J.M., Wong, T.F.: Multidimensional codes. Encyclopedia of Telecommunications (2003)

    Google Scholar 

  33. Shen, B.Z., Tzeng, K.: Multidimensional extension of reed-solomon codes. In: Information Theory 1998 Proceedings 1998 IEEE International Symposium on, p. 54. IEEE (1998)

    Google Scholar 

  34. Todd, P.: Fraud proofs (2016). https://diyhpl.us/wiki/transcripts/mit-bitcoin-expo-2016/fraud-proofs-petertodd/

  35. Wicker, S.B.: Reed-solomon codes and their applications. IEEE Press, Piscataway, NJ, USA (1994)

    Google Scholar 

  36. Wong, J.I.: CryptoKitties is causing Ethereum network congestion (2017). https://qz.com/1145833/cryptokitties-is-causing-ethereum-network-congestion/

  37. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger - Byzantium version, p. e94ebda (yellow paper) (2018). https://ethereum.github.io/yellowpaper/paper.pdf

  38. Wu, J., Costello, D.: New multilevel codes over GF(q). IEEE Trans. Inf. Theory 38(3), 933–939 (1992)

    Google Scholar 

  39. Yu, M., Sahraei, S., Li, S., Avestimehr, S., Kannan, S., Viswanath, P.: Coded merkle tree: solving data availability attacks in blockchains. In: Financial Cryptography and Data Security (2020)

    Google Scholar 

  40. Zamani, M., Movahedi, M., Raykova, M.: Rapidchain: Scaling blockchain via full sharding. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 931–948 (2018)

    Google Scholar 

Download references

Acknowledgements

Mustafa Al-Bassam is supported by a scholarship from The Alan Turing Institute and Alberto Sonnino is supported by the European Commission Horizon 2020 DECODE project under grant agreement number 732546.

Thanks to George Danezis, Alexander Hicks and Sarah Meiklejohn for helpful discussions about the mathematical proofs.

Thanks to our shephard Sreeram Kannan for providing helpful feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Al-Bassam .

Editor information

Editors and Affiliations

Appendix

Appendix

See the full version of the paper at https://fc21.ifca.ai/papers/83.pdf.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 International Financial Cryptography Association

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Al-Bassam, M., Sonnino, A., Buterin, V., Khoffi, I. (2021). Fraud and Data Availability Proofs: Detecting Invalid Blocks in Light Clients. In: Borisov, N., Diaz, C. (eds) Financial Cryptography and Data Security. FC 2021. Lecture Notes in Computer Science(), vol 12675. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-64331-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-64331-0_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-64330-3

  • Online ISBN: 978-3-662-64331-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics