Skip to main content

Optische Meßverfahren

  • Chapter
Strömungsmeßtechnik

Part of the book series: Uni-texte ((UT))

  • 341 Accesses

Zusammenfassung

Die in der Strömungsmeßtechnik angewandten optischen Verfahren beruhen darauf, daß Dichteänderungen in einem Gas oder in einer Flüssigkeit auch Änderungen des Brechungsindex zur Folge haben. Schickt man daher Lichtstrahlen durch ein durchlässiges Medium veränderlicher Dichte, so werden diese abgelenkt oder erleiden Phasenunterschiede.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. V. Dvorak: Über eine neue einfache Art der Schlierenbeobachtung. Wiedemann’s Ann. d. Phys. u. Chemie, Bd. 9, 502, Leipzig 1880.

    Google Scholar 

  2. H. Schardin: Das Toeplersche Schlierenverfahren. VDI Forsch. Heft 367, Berlin 1934.

    Google Scholar 

  3. H. Schardin: Die Schlierenverfahren und ihre Anwendungen. Ergebn. exakte Nat. Wiss. 10, Berlin 1941.

    Google Scholar 

  4. N. F. Barnes und S. L. Bellinger: Schlieren and Shadowgraph Equipment for Air Flow Analysis. J. Opt. Soc. Am. Vol. 35, S. 497, Lancaster 1945.

    Google Scholar 

  5. B. S. Melton, R. Prescott und E. L. A. Gayhart: A Working Manual for Spark Shadow-graph Photography. Bumblebee Series Rep. 90, 1948.

    Google Scholar 

  6. E. Balint: Techniques of Flow Visualization. Aircr. Engng. 25, 292, 161–167, Bunhill Publ. London 1953.

    Google Scholar 

  7. J. W. Beams: Shadow and Schlieren Methods in: High Speed Aerodynamics and Jet Propulsion, Bd. 9, Princeton Univ. Press 1954.

    Google Scholar 

  8. M. Merle: Etude expérimentale des écoulements gazeux. Publ. Sci. tech. Min. Air France 308, Paris 1956.

    Google Scholar 

  9. D. W. Holder und J. R. North: Schlierenmethods. AGARD ograph 23, 1956 und Notes on Applied Schiences, Nat. Phys. Lab. London 1963.

    Google Scholar 

  10. C. J. Stalmach, jr. und J. M. Cooksey: New Test Techniques for a Hypervelocity Wind Tunnel. Aerospace Engng. 21, 3, 62–63, 80, 82–84, New York 1962.

    Google Scholar 

  11. E. F. Lype: The Use of Shock-Wave Observations for the Determination of the Equation of State 9th Congr. Intern. Mecan. appl. Univ. Bruxelles, 2, 146–155, 1957.

    Google Scholar 

  12. H. Lewy: On the Relation Between the Velocity of a Shock Wave and the Width of the Lightgap it Leaves on the Photographic Plate. APG, BRL. Rep. 373, 1943.

    Google Scholar 

  13. P. C. Keenan: Shadowgraph Determination of Shock-Wave Strength. Bull. Ord. Explosives Res. Rep. No. 11, 1943.

    Google Scholar 

  14. W F. Hilton: The Photography of Airscrew Sound Waves. Proc. Roy. Soc. A 169, S. 174, London 1938.

    Google Scholar 

  15. H. H. Pearcey: The Indication of Boundary-Layer Transition on Aerofoils in the N.P.L. 20 in. by 8 in. High-Speed Tunnel. A.R.C. Curr. Pap. 10, London 1950.

    Google Scholar 

  16. D. Pierce: Photographic Evidence of the Formation and Growth of Vorticity Behind Plates Accelerated From Rest in Still Air. J. Fluid Mech. 11, 460–464, London 1961.

    Google Scholar 

  17. M. S. Uberoi und L. S. G. Kovasznay: Analysis of Turbulent Density Fluctuations by the Shadow Method. J. Appl. Phys. 26, 19–24, Lancaster 1955.

    Google Scholar 

  18. A. B. C. Anderson: Structure and Velocity of the Periodic Vortex-Ring Flow Pattern of a Primary Pfeifenton (Pipe ton) jet. J. Acoust. Soc. Amer. 27, 1048 to 1053, Lancaster 1955.

    Google Scholar 

  19. S Love und O E. Grigsby: A New Shadowgraph Technique for the Observation of Conical Flow Phenomena in Supersonic Flow and Preliminary Results Obtained for a Triangular Wing. NACA Techn. Note 2950, Washington 1953.

    Google Scholar 

  20. A. O. Ormerod: Note of the Use of the Three-Dimensional Shock-Wave Recorder for Studying Interference in a Supersonic Wind-Tunnel. Aero. Res. Counc. Lond. Rep. Mem. 2798, 1950, veröff. 195 3.

    Google Scholar 

  21. W. J. Orlin, N. J. Lindner und J. G. Bitterly: Application of the Analogy Between Water Flow With a Free Surface and Two-Dimensional Compressible Flow. NACA Rep. 875, Washington 1947.

    Google Scholar 

  22. E. Schmidt: Schlierenaufnahmen des Temperaturfeldes in der Nähe wärmeabgebender Körper. Forsch. Ing. Wes. Bd. 3, S. 181, Berlin 1932.

    Google Scholar 

  23. A. Toepler: Beobachtungen nach einer neuen optischen Methode. Pogg. Ann. Phys. Chem. Bd. 127, S. 556 (1866), Bd. 128, S. 126 (1866), Bd. 131, S. 33 u. 180 (1867) u. Bd. 134, S. 194 (1868), Leipzig;

    Google Scholar 

  24. D. W. Holder und R. J. North: The Toepler Schlieren Apparatus. Aero. Res. Counc. Lond. Rep. Mem. Nr. 2780, London 1953.

    Google Scholar 

  25. H. G. Taylor und J. M. Waldrum: Improvements in the Schlieren Method. J. Sc. Instr. Vol. 10, S. 378, London 1933.

    Google Scholar 

  26. W. S. Bradfield und W. I. Fish: A High-Speed Schlieren Technique for Investigation of Aerodynamic Transients. J. Aero. Sc. Vol. 19, S. 418, New York 1952.

    Google Scholar 

  27. A. Kantrowitz und T. R. L. Trimpi: A Sharp-Focusing Schlieren System. J. Aero. Sci Bd. 17, S. 311/314, New York 1950.

    Google Scholar 

  28. R. W. Fish und K. Painhann: Focusing Schlieren Systems. R.A.E. Techn. Note I, A, S. 399, London 1950.

    Google Scholar 

  29. W. S. Bradfield und J. J. Sheppard: Microschlieren - A Technique for the Study of Details in Compressible Flow. Aero/SpaceEngng. 18, 5, S. 37/40, New York 1959.

    Google Scholar 

  30. R. J. North: A Colour Schlieren System Using Multi-Colour Filters of Simple Construction. Nat. Phys. Lab., Aero Note 266, Teddington 1954.

    Google Scholar 

  31. R. J. North und R. F. Cash: Colour Schlieren Photography in High-Speed Wind Tunnels. Nat. Phys. Lab., Aero Note 383, Teddington 1959.

    Google Scholar 

  32. R. J. North: Note on Schlieren Systems. Nat. Phys. Lab., Aero Note 397, Teddington 1959.

    Google Scholar 

  33. D. W. Holder und R. J. North: A Schlieren Apparatur Giving an Image in Colour. Nature Bd. 169, S. 466, London 1952.

    Google Scholar 

  34. G. E. Hays: A Color Schlieren Systems for High-Speed Photography. J. Soc. Mot. Pict. Telev. Engrs. 66,, 6 S. 355 /356, 1957.

    Google Scholar 

  35. J. Surget: Strioscopie quantitative à grille colorée et fente d’ entrée multiple. Rech. Aerospat. 97, 37/42, Chatillon 1963.

    Google Scholar 

  36. F. Zernike: Phase Contrast, A New Method for the Microscopic Observation of Transparent Objects. Physics, Nr. 9, S. 686 /698, 974–986, Amsterdam 1942.

    Article  Google Scholar 

  37. A. H. Bennett, A. Osterberg, H. Jupnik und O. Richards: Phase Microscopy. J. Wiley S., New York - London 1951.

    Google Scholar 

  38. E. Ingelstam: Application des dispositifs à contraste variable à l’étude des champs aérodynamiques. Contraste de phase et contraste par interférences. Edit. Revue d’ optique théor. et instrum. 223, Paris 1952.

    Google Scholar 

  39. S. F. Erdmann: Ein neues, sehr einfaches Interferometer zum Erhalt quantitativ aus-wertbarer Strömungsbilder. App. Sc. Res. B. 2, 1, Den Haag 1951. (Engl. Übers. NACA TM 1363, Washington 1953.

    Google Scholar 

  40. A. Van de Vooren: Theory of the Erdmann Interferometer for Investigation of Compressible Flows. Appl. Sc. Res. B. 3, 18, Den Haag 1952.

    Google Scholar 

  41. G. S. Speak und D. J. Walters: Optical Considerations and Limitations of the Schlieren Method. Aero. Res. Counc. Lond. Rep. + Mem. 2859, 1954.

    Google Scholar 

  42. H. Walter: Die hauptsächlichen McAfehler beim Schlieren-und Interferenzverfahren. Ann. Phys. Leipzig 19, 1 /2, 1956.

    Google Scholar 

  43. M; Neumann: Zur quantitativen Auswertung von Schlierenbildern rotationssymmetrischer Strömungen. Dtsch. Versuchsanst. Luftfahrt, Ber. 91, Porz-Wahn 1961.

    Google Scholar 

  44. C. Picard: Analyse strioscopique d’écoulements supersoniques à trois dimensions. Rech. aéro. no. 32, 15–19, Chatillon 1953.

    Google Scholar 

  45. H. Schardin: Measurement of Spherical Shock Waves. Comm. pure appl. Math. 7, 223–243, New York 1954.

    Google Scholar 

  46. I. I. Glass und L. E. Henckroth: An Experimental Investigation of the Head-On Collision of Spherical Shock Waves. Univ. Toronto, Inst. Aerophys. Rep. 59, 1960.

    Google Scholar 

  47. H. E. Edgerton: Shock Wave Photography of Large Subjects in Daylight. Rev. Sci. Instrum. 29, S. 171/172, New York 1958.

    Google Scholar 

  48. A. H. Lange, L. P. Gieseler und R. E. Lee: Variation of Transition Reynolds Number with Mach Number. J. aero. Sci 20, S. 718/719, New York 1953.

    Google Scholar 

  49. M. W. Jackson und K. R. Czarnecki: Investigation by Schlieren Technique of Methods of Fixing Fully Turbulent Flow on Models at Supersonic Speeds. NASA TN D-242, Washington 1960.

    Google Scholar 

  50. D. H. Grubman: Method of Determining Boundary Layer Thickness from Schlieren Photographs. ARSJ, 32, 8, S. 1296/1297, New York 1962.

    Google Scholar 

  51. J. W. Daiber: An Optical Boundary Layer Probe. J. Aerospace Sci 27, 11, 836–840, New York 1960.

    MATH  Google Scholar 

  52. J. A. Dunsby: Schlieren Tests on Some Conventional Turbine Cascades. Aero. Res. Counc. Lond. Mem 2728, 1953.

    Google Scholar 

  53. M. Philbert und G. Dubois: La visualisation des écoulements aérodynamiques à fable masse spécifique. La Rech. Aéron. no. 81, S. 31/35, Chatillon 1961.

    Google Scholar 

  54. M. Philbert: Visualisation des écoulements à basse pression. Rech. Aerosp. Nr. 99, 39, Chatillon 1964.

    Google Scholar 

  55. R. E. Slattery und W. G. Clay: Width of the Turbulent Trail behind a Hypervelocity Sphere. Phys. Fluids 10, S. 1199/1201, Am. Inst. Phys., New York 1961.

    Google Scholar 

  56. R. E. Slattery und W. G. Clay: Measurement of Turbulent Transition, Motion, Statistics and Gross Radial Growth behind Hypervelocity Objects. Phys. Fluids 5, 7, S. 849/855, Amer. Inst. Phys., New York 1962.

    Google Scholar 

  57. A. C. Egerton, O. A. Saunders, A. H. Lefebre und N.P. W. Moore: Some Observations by Schlieren Technique of the Propagation of Flames in a Closed Vessel. 4th Symp. on Combustion. S. 396/402, Williams and Wilkins, Baltimore 1953.

    Google Scholar 

  58. E. H. W. Schmidt, H. Steinicke und U. Neubert: Flame and Schlieren Photographs of Combustion Waves in Tubes. 4th Symp. on Combustion, S. 658/666, Baltimore 195 3.

    Google Scholar 

  59. G. Dixon-Lewis und G. L. Isles: Sharp-Focusing Schlieren Systems for Studies of Flat Flames. J. Sci. Instrum. 39, 4, S. 148/151, London 1962.

    Google Scholar 

  60. O. Nomoto: Theory of the Visualization of Ultrasonic Waves, J. Phys. Soc. Japan 9, S. 267/286, Tokio 1954.

    Google Scholar 

  61. R. E. Bland und T. J. Pelick: The Schlieren Method Applied to Flow Visualization in a Water Tunnel. Trans. ASME 84 D (J. Basic Engng.)S. 587/592, New York 1962.

    Google Scholar 

  62. J. E. Creeden und J. S. King: Multiple Simultaneous Imaging Schlieren System. J. Roy. Aeronaut. Soc. 68, 639, S. 199, London 1964.

    Google Scholar 

  63. R. P. Frazer: High Speed Photography in Fluid Kinetics. J. photographic Soc. Lond. 3, S. 21 /32, 1955.

    Google Scholar 

  64. G. Dubois: Méthode de visualization d’ écoulement supersonique. ONERA no. 5 3, S. 33/42, Ch atillon 195 6.

    Google Scholar 

  65. Th. Zobel: Entwicklung und Bau eines Interferenzgerätes zur optischen Messung von Dichtefeldern. Deutsche Luftfahrtf. Forsch. Ber. Nr. 1008. (Engl. Übers. NACA TM 1184, Washington 1947 ).

    Google Scholar 

  66. R. Ladenburg, J. Winckler und C. C. Can Voorlies: Interferometric Studies of Faster than Sound Phenomena. Phys. Rev. 73, 11, 1359–1377, 1948 und 76, 5, 662–677, New York 1949.

    Google Scholar 

  67. J. R. Winckler: The Mach Interferometer Applied to Studying on Axially-Symmetric Supersonic Air Jet. Rev. Sci. Instr. 19, 5, 307–322, New York 1948.

    Google Scholar 

  68. W. Kinder: Theorie des Mach-Zehnder-Interferometers und Beschreibung eines Gerätes mit Einspiegeleinstellung. Optik, Bd. 1, 413–448, Stuttgart 1946.

    Google Scholar 

  69. G. Zebel: Optische Untersuchungen über die Wechselwirkung zwischen einer einfallenden Stoßwelle und der Grenzschicht sowie dem Nachlauf einer Platte in schnell strömenden Gasen. Ber. Max-Planck-Institut f. Strömungsforschung, Göttingen 53/T/04, 1953.

    Google Scholar 

  70. U. Grigull und H. Rottenkolber: Two-Beam Interferometer Using a Laser. J. Opt. Soc. Amer. 57, 149–155, Lancaster 1967.

    Google Scholar 

  71. W. Richter: Interferometer mit großen Spiegeln für optische Strömungsuntersuchungen. Jb. Wiss. Ges. Luftf. 1958, 105–117, Braunschweig.

    Google Scholar 

  72. J. G. Hall: The Design and Performance of a 9-Inch Plate Mach-Zehnder Interferometer. Univ. Toronto Inst. Aerophys. Rep. No. 27, 1954.

    Google Scholar 

  73. D. W. Holder, R. J. North und G. P. Wood: Optical Methods for Examining the Flow in High-Speed Wind Tunnel. Pt. II Interferometer Methods. AGARDDograph 23, Paris 1956.

    Google Scholar 

  74. L. H. Tanner: The Optics of the Mach-Zehnder Interferometer. Aer. Res. Counc. London, Rep. + Mem. 3069, 1959.

    Google Scholar 

  75. G. Gontier: Contribution à l’ étude de l’interféromètre différentiel à biprisme de Wollaston. Publ. Sci. Techn. Min. Air France No. 338, Paris 1957.

    Google Scholar 

  76. G. Gontier: Remarques sur le fonctionnement et l’ étallonage de dispositifs birefringents pour l’ interférometrie appliquée à l’ aérodynamique. 9. Internat. Kongr. Ang. Mech. 4, 447–457, Brüssel 1957.

    Google Scholar 

  77. M. Philbert: Emploi de la strioscopie interférentielle en aérodynamique. La Rech. Aéron.65 19–27, Chatillon 1958.

    Google Scholar 

  78. E. B. Temple: The Physical Optical Analysis and Application of the Schlieren Interferometer. Mass. Inst. Techn. Nay. Spperson. Lab. Tech. Rep. 133, Clunbridge, Mass. 1959.

    Google Scholar 

  79. J. F. Waterhouse und H. B. Spencer: The Application of the Schlieren-Interferometer to the Study of Supersonic Flow around the yawed Axi-Symmetric Bodies. J. Roy. Aero. Soc. 65, 610, 691–694, London 1961.

    Google Scholar 

  80. W F. Merzkirch: A Simple Schlieren Interferometer. AIAA J., 3, 10, 1974–1976, New York 1965.

    Google Scholar 

  81. R. Kraushaar: A Diffraction Grating Interferometer. J. Opt. Soc. Amer. 40, 480–481, Lancaster 1950.

    Google Scholar 

  82. J. R. Sterret und J. R. Erwin: Investigation of a Diffraction-Grating Interferometer for Use in Aerodynamic Research. NACA TN 2827, Washington Nov. 1952.

    Google Scholar 

  83. J. R. Sterret, J. C. Emery und J. B. Barber: A Laser Grating Interferometer. AIAA J. 3, 5, 963–964, New York 1965.

    Google Scholar 

  84. O. Gabor: A New Microscope Principle. Nature 161, 777–778, London 1948.

    Google Scholar 

  85. L. H. Tanner: Some Applications of Holography in Fluids Mechanics. J. Sci. Instr. 43, 2, 81–83, London 1966.

    Google Scholar 

  86. H. K. Zienkiewicz: Wave Theory of the Mach-Zehnder Interferometer. Aer. Res. Counc. Rep. + Mem. 3173, London 1961.

    Google Scholar 

  87. W. L. Howes und D. R. Buchele: Generalization of Gas-Flow Interferometry Theory and Interferogram Evaluation Equations fur One-Dimensional Density Fields. NACA TN 3340, Washington 1955.

    Google Scholar 

  88. J. H. Spurk und D. D. Shear: Simultaneous Streak and Frame Interferometry for Use in Short-Duration Hypervelocity Facilities. Physics of Fluids 8, 10, 1913–1915, 1965.

    Article  Google Scholar 

  89. Solignac: Méthode de éponillement des intérferogrammes en écoulement de révolution. Rech. Aerospat. no. 104, 12–13, Chatillon 1965.

    Google Scholar 

  90. E. H. Winkler: Principle and Design of a New Type Stieltje’s Integrator. Nay. Ordn. Lab. Mem. 10798, Washington 1950.

    Google Scholar 

  91. J. H. Giese, F. D. Bennett und V. E. Bergdolt: A Simple Interferonietric Test for Conical Flow. J. Appl. Phys. 21, 1226–1231, Lancaster 1950.

    Google Scholar 

  92. M. Constans: Causes d’erreurs en interférométrie et en strioscopie interférentielle. La Rech. Aeron. 86, 53–63, Chatillon 1962.

    Google Scholar 

  93. G. P. Wachtell: Refraction Effect in Interferometry of Boundary Layer of Supersonic Flow Along Flat Plate. Phys. Rev. 78, 333, New York 1950.

    Google Scholar 

  94. R. E. Blue: Interferometer Corrections and Measurement of Laminar Boundary Layers in Supersonic Stream. NACA TN 2110, Washington 1950.

    Google Scholar 

  95. F. D. Werner und B. M. Leadon: Very Accurate Measurement of Fringe Shift in an Optical Interferometer Study of Gas Flow. Rev. Sci. Instr. 24, 121–124, New York 1953.

    Google Scholar 

  96. P. Guienne und F. Banniol: Application de l’interférométrie à l’étude de l’écoulement d’un fluide visqueux à une onde de choc détachée. 9. Int. Kongr. Angew. Mech., 2 87–100, Brüssel 1957.

    Google Scholar 

  97. V. A. Emel’yanow: Interferometric Investigation of Gas Non Uniformities behind a Shock Wave (russ.) Inzhen: Fiz.Zh. 6, 1, 79–86, 1963.

    Google Scholar 

  98. C. R. Faulders: An Interferometric Study of the Boundary Layer on a Turbine Nozzle Blade. Trans. ASME 76, 194, 61–66, New York.

    Google Scholar 

  99. R. Ladenburg, C. C. Van Voorlies und J. Winckler: A Supersonic Air Jet at 60 lb/in2 Tank Pressure. NOL, Rep. 69–46, Washington 1946.

    Google Scholar 

  100. F. D. Bennett, W. C. Carter und V. E. Bergdolt: Interferometric Analysis of Air Flow About Projectiles in Free Flight. J. Appl. Phys. 23, 453–468, Lancaster 1952.

    Google Scholar 

  101. F. D. Bennett: Effect of Random Errors in Fringe Shift on Interferogram Reductions of Axi-Symmetric Flows. Phys. Rev. 83, 200, New York 1951.

    Google Scholar 

  102. J. H. Giese und V. F. Bergdolt: Interferometric Studies of Supersonic Flows About Truncated Cones. J. Appl. Phys. 24, 1389–1396, Lancaster 1953.

    Google Scholar 

  103. D. H. Steininger und F. D. Bennett: Interferometric Test for N-Wave Flow. J. Fluid Mech. 2, 3, 209–236, Cambridge Univ. Press 1957.

    MATH  Google Scholar 

  104. G. A. Etemad: Free Convection Heat Transfer From a Horizontal Cylinder to Ambient Air, With Interferometric Study of Flow. ASME Ann. Meet., Paper 54-A-74, New York 1954.

    Google Scholar 

  105. J. W. Beams: Some Interferometer Techniques for Observation of Sedimentation. REv. Sci. Instr. 34, 2, 139–142, New York 1963.

    Google Scholar 

  106. E. W. Price: Initial Adjustment of the Mach-Zehnder Interferometer. Rev. Sci. Instr. 23, 162, New York 1952.

    Google Scholar 

  107. R. Eichhorn, J. A. Schetz und R. E. Luna: Instant Interferometer Windows. Internat. J. Heat Mass Transfer 5, 791, Pergamon Press, Oxford 1962.

    Google Scholar 

  108. J. M. Benson: The Physical Properties of Active Nitrogen in Low-Density Flow. NACA Techn. Note 2293, Washington 1951.

    Google Scholar 

  109. W. B. Kunkel und F. C. Hurlbut: Luminiscent Gas Flow Visualization for Low Density Wind Tunnels. J. Appl. Phys. 28, 8, 827–835, Lancaster 1957.

    Google Scholar 

  110. H. J. Bömelburg: A New Glow-Discharge Method for Flow Visualization in Supersonic Wind-Tunnels. J. Aero/Space Sci. 25, 11, 727/28, New York 1958.

    Google Scholar 

  111. F.S. Sherman: Univ. Calif. Eng. Projects Rept. HE 150–70, 1950.

    Google Scholar 

  112. A. I. Carswell: Gas Flow Visualization Using Low-Density Plasma Streams. Phys. Fluids 5, 9, 1128–1130, 1962.

    Article  Google Scholar 

  113. R. Ladenburg und C. C. Van Voorlies: The Continuous Absorption of Oxygen Between 1750 and 1300 A and its Beasing Upon the Dispersion. Phys. Rev. 43, 315–321, New York 1933.

    Google Scholar 

  114. D. C. Stockbarger: Artificial Fluorite. J. Opt. Soc. Amer. 39, 731–740, Lancaster 1949.

    Google Scholar 

  115. P. M. Sherman: Visualization of Low-Density Flows by Means of Oxygen-Absorption of Ultraviolett Radiation. J. Aero. Sci. 24, 2, 93–98, 106, New York 1957.

    Google Scholar 

  116. R. A. Evans: Univ. Calif. Eng. Projects Rept. HE-150–25, 1947.

    Google Scholar 

  117. E. Schopper und B. Schumacher: Messung von Gasdichten mit Korpuskularstrahlen. Z. Naturforsch. 69, 700–705, Tübingen 1951.

    Google Scholar 

  118. E. O. Gadamer: Measurement of the Density Distribution in a Rarefied Gas Flow Using the Fluorescence Induced by a Thin Electron Beam. UTIA Rep. 83, University of Toronto 1962.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Verlag Friedr. Vieweg & Sohn GmbH, Braunschweig

About this chapter

Cite this chapter

Wuest, W. (1969). Optische Meßverfahren. In: Strömungsmeßtechnik. Uni-texte. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-04532-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-04532-8_12

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-663-03343-1

  • Online ISBN: 978-3-663-04532-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics