Skip to main content

Kardiale Labordiagnostik

  • Chapter
Labormedizin

Auszug

In den letzten Jahren haben sich die Möglichkeiten der kardialen Labordiagnostik wesentlich erweitert. Grundsätzlich können vier Fragestellungen unterschieden werden:

  1. 1.

    Diagnostik von myokardialer Gewebszerstörung (in den häufigsten Fällen ischämische Ursache: akutes Koronarsyndrom mit den klinischen Symptomen, die von unstabiler Angina pectoris bis Myokardinfarkt reichen)

  2. 2.

    Diagnostik der Herzinsuffizienz

  3. 3.

    labordiagnostisch feststellbare Risikofaktoren für Atherosklerose

  4. 4.

    molekulargenetische kardiale Prädispositionsdiagnostik

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Allgemein

  • Löffler G (1998) Basiswissen Biochemie mit Pathobiochemie. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Thomas L (1998) Labor und Diagnose. TH-Books Verlagsgesellschaft mbH, Frankfurt/Main

    Google Scholar 

Speziell

  1. The Joint European Society of Cardiology/American College of Cardiology Committee. Myocardial infarction redefined — A consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of Myocardial infarction (2000). Eur Heart J 21: 1502–1513

    Article  Google Scholar 

  2. Wu A H B, Laios I, Green S, Gornet T G, Wong S S, Parmley L, Tonnesen A S, Plaisier B, Orlando R (1994) Immunoassays for serum and urine myoglobin: Myoglobin clearance assessed as a risk factor for acute renal failure. Clin Chem 40(5): 796–802

    PubMed  CAS  Google Scholar 

  3. Halwachs G, Iberer F, Pieber T, Müller H, Tscheliessnigg K H, Tiran A, Sabin K, Wilders-Truschnig M (1996) Troponin T as a marker for postransplantation adaptational problems of the donor heart. J Heart Lung Transplant 15(5): 451–455

    PubMed  CAS  Google Scholar 

  4. Keller T., Zeller T., Peetz D., et al (2009) Sensitive Troponin I assay in early diagnosis of acute myocardial infarction. N Engl J Med 361(9): 868–877

    Article  PubMed  CAS  Google Scholar 

  5. Antman E M, Milenko J T, Thompson B, Schactman M, McCabe C H, Cannon C P, Fischer G A, Fung A Y, Thompson C, Wybenga D, Braunwald E (1996) Cardiac-specific troponin I levels to predict the risk of mortality in patients with acute coronary syndromes. N Engl J Med 335(18): 1342–1349

    Article  PubMed  CAS  Google Scholar 

  6. Galvani M, Ottani F, Ferrini D, Ladenson J H, Destro A, Baccos D, Rusticani F, Jaffe A S (1997) Prognostic influence of elevated values of cardiac troponin I in patients with unstable angina. Circulation 95(8): 2053–2059

    PubMed  CAS  Google Scholar 

  7. Ottani F, Galvani M, Ferrini D, Ladenson J H, Puggioni R, Destro A, Baccos D, Bosi S, Ronchi A, Rusticani F, Jaffe A S (1999) Direct comparison of early elevations of cardiac troponin T in patients with clinical unstable angina. Am Heart J 137(2): 284–291

    Article  PubMed  CAS  Google Scholar 

  8. Kontos M C, Shah R, Fritz L M, Anderson P F, Tatum J L, Ornato J P, Jesse R L (2004) Implication of different cardiac troponin I levels for clinical outcomes and prognosis of acute chest pain patients. JACC 43(6): 958–965

    PubMed  CAS  Google Scholar 

  9. Horwich T B, Patel J, MacLellan R, Fonarow G C (2003) Cardiac troponin I is associated with impaired hemodynamics, progressive left ventricular dysfunction, and increased mortality rates in advanced heart failure. Circulation 108: 833–838

    Article  PubMed  CAS  Google Scholar 

  10. Landesberg G, Shatz V, Akopnik I, Wolf Y G, Mayer M, Berlatzky Y, Weissman C, Mosseri M (2003) Association of cardiac troponin, CK-MB, and postoperative myocardial ischemia with long-term survival after major vascular surgery. JACC 42(9): 1547–1554

    PubMed  CAS  Google Scholar 

  11. Kim L J, Martinez E A, Faraday N, Dorman T, Fleisher L A, Perler B A, Williams M, Chan D, Pronovost P J (2002) Cardiac troponin I predicts short-term mortality in vascular surgery patients. Circulation 106: 2366–2371

    Article  PubMed  CAS  Google Scholar 

  12. Potapov E V, Wagner F D, Loebe M, Ivanitskaia E A, Muller C, Sodia A, Jonitz B, Hetzer R (2003) Elevated donor cardiac troponin T and procalcitonin indicate independent mechanisms of early graft failure after heart transplantation. Int J Cardiol 92(2–3): 163–167

    Article  PubMed  Google Scholar 

  13. Tate J R, Heathcote D, Rayfield J, Hickman P E (1999) The lack of standardization of cardiac troponin I assay systems. Clin Chim Acta 284: 141–149

    Article  PubMed  CAS  Google Scholar 

  14. Venge P, Lageryvist B, Diderholm E, Lindahl B, Wallentin L (2002) Clinical performance of three cardiac troponin assays in patients with unstable koronary artery disease (a FRISC II substudy). Am J Cardiol 89: 1035–1041

    Article  PubMed  CAS  Google Scholar 

  15. Jossi S., Gordon S.L., Legge M.A., Armstrong G.P. (2006) All troponins are not created equal. Internal Medicine Journal 36: 325–327

    Article  PubMed  CAS  Google Scholar 

  16. Antman E M (2002) Dicision making with cardiac troponin tests. N Engl J Med 346(26): 2079–2082

    Article  PubMed  Google Scholar 

  17. Apple F S, Wu A H B, Jaffee A S (2002) European society of cardiology and American college of cardiology guidelines for redefinition of myocardial infarction: How to use existing assays clinically and for clinical trials. Am Heart J 144: 981–986

    Article  PubMed  Google Scholar 

  18. Antmann E. M. et al. ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction: a report of the American College of Cardiology /American Heart Association Tsk Force on Practice Guidelines (Committee to Revise the 1999 Guidelines for the management of Patients with acute myocardial infarction) ACC/AHA Practice Guidelines 2004; available at www.acc.arg/clinical/guidelines/stemi/index.pdf

  19. Christenson R. H. (2007) Biomarkers of acute koronary syndromes and heart failure. Laboratory Medicine Practice Guidelines of the National Academy of Clinical Biochemistry

    Google Scholar 

  20. Fox K A A, Birkhead J, Wilcox R, Knight C, Barth J (2004) British cardiac society working group on the definition of myocardial infarction. Heart 90: 603–609

    Article  PubMed  CAS  Google Scholar 

  21. Bassand J. P. et al (2007) guidelines for the diagnosis and treatment of non-ST-segment elevation acute koronary syndromes. European Heart Journal 28: 1598–1660

    Article  PubMed  CAS  Google Scholar 

  22. Stewart J T, French J K, Theroux P, Ramanathan K, Solymoss BC, Johnson R, White H D (1998) Early noninvasive identification of failed reperfusion after intravenous thrombolytic therapy in acute myocardial infarction. JACC 31(7): 1499–1505

    PubMed  CAS  Google Scholar 

  23. Laperche T, Golmard J L, Steg P G (1997) Early behavior of biochemical markers in patients with thrombolysis in myocardial infarction grade 2 flow in the infarcted artery as opposed to their flow grades after intravenous thrombolysis for acute myocardial infarction. PERM study group. Prospective evaluation of reperfusion markers. Am Heart J 134(6): 1044–1051

    Article  PubMed  CAS  Google Scholar 

  24. Kragten J A, Hermens W T, van Dieijen-Visser M P (1997) Cumulative troponin T release after acute myocardial infarction. Influence of reperfusion. Eur J Clin Chem Clin Biochem 35(6): 459–467

    PubMed  CAS  Google Scholar 

  25. Veerkamp J H, Maatman R G H J (1995) Cytoplasmic fatty acid-binding proteins: their structure and genes. Prog Lipid Res 34: 17–52

    Article  PubMed  CAS  Google Scholar 

  26. Alhadi H A, Fox K A A (2004) Do we need additional markers of myocyte necrosis: the potential value of heart fatty-acid-binding protein. Q J Med 97: 187–198

    CAS  Google Scholar 

  27. Van Nieuwenhoven F A, Kleine A H, Wodzig W H, Hermens W T, Kragten H A, Maessen J G, Punt C D, Van Dieijen M P, Van Der Vusse G J, Glatz J F C (1995) Discrimination between myocardial and skeletal muscle injury by assessment of the plasma ratio of myoglobin over fatty acid-binding protein. Circulation 92: 2848–2854

    PubMed  Google Scholar 

  28. Wu A H B, Graff L, Petry C, Armstrong G, Prigent F, Brown M (2000) Role of heart-type fatty acid-binding protein in early detection of acute myocardial infarction. Clin Chem 46: 718–719

    PubMed  Google Scholar 

  29. Gorski J, Hermens W T, Borawski J, Mysliwiec M, Glatz J F C (1997) Increased fatty acid-binding protein concentration in plasma of patients with chronic renal failure. Clin Chem 43: 193a–195a

    Google Scholar 

  30. ACC/AHA guidelines for the evaluation and management of chronic heart failure in the adult (2001) Executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to revise the 1995 guidelines for the evaluation and management of heart failure). Circulation 104: 2996–3007

    Article  Google Scholar 

  31. Levin E R, Gardner D G, Samson W K (1998) Natriuretic peptides. N Engl J Med 339(5): 321–328

    Article  PubMed  CAS  Google Scholar 

  32. Omland T, Aakvaag A, Bonarjee V V S, Caidahl K, Lie R T, Nilsen D W T, Sundsfjord J A, Dickstein K (1996) Plasma brain natriuretic peptide as an indicator of left ventricular systolic function and long-term survival after acute myocardial infarction. Circulation 93: 1963–1969

    PubMed  CAS  Google Scholar 

  33. McNairy M, Gardetto N, Clopton P, Garcia A, Krishnaswamy P, Kazanegra R, Ziegler M, Maisel A S (2002) Stability of B-type natriuretic peptide levels during acercise in patients with congestive heart failure: Implications for autopatient monitoring with B-type natriuretic peptide. Am Heart J 143:406–411

    Article  PubMed  CAS  Google Scholar 

  34. Loke I, Squire I B, Davies J E, Ng L L (2003) Reference ranges for natriuretic peptides for diagnostic use are dependent on age, gender and heart rate. Europ J Heart Fail 5: 599–606

    Article  CAS  Google Scholar 

  35. Redfield M M, Rodeheffer R J, Jacobsen S J, Mahoney D W, Bailey K R, Burnett J C (2002) Plasma brain natriuretic peptide concentration: Impact of age and gender. JACC 40(5): 976–982

    PubMed  CAS  Google Scholar 

  36. Maisel A S, Clopton P, Krishaswamy P, Nowak R M, McCord J, Hollander J E, Duc P, Omland T, Storrow A B, Abraham W T, Wu A H B, Steg G, Westheim A, Knudsen C W, Perez A, Kazanegra R, Bhalla V, Herrmann H C, Aumont M C, McCullough P A (2004) Impact of age, race, and sex on the ability of B-type natriuretic peptide to aid in the emergency diagnosis of heart failure: Results from the breathing not properly (BNP) multinational study. Am Heart J 147: 1078–1084

    Article  PubMed  CAS  Google Scholar 

  37. McCord J, Mundy B J, Hudson M P, Maisel A S, Hollander J E, Abraham W T, Steg P G, Omland T, Knudsen C W, Sandberg K R, McCullough P A (2004) Relationship between obesity and B-type natriuretic peptide levels. Arch Intern Med 164: 2247–2252

    Article  PubMed  CAS  Google Scholar 

  38. McCullough P A, Nowak R M, McCord J, Hollander J E, Herrmann H C, Steg P G, Duc P, Westheim A, Omland T, Knudsen C W, Storrow A B, Abraham W T, Lamba S, Wu A H B, Perez A, Clopton P, Krishnaswamy P, Kazanegra R, Maisel A S (2002) B-Type natriuretic peptide and clinical judgment in emergency diagnosis of heart failure. Circulation 106: 416–422

    Article  PubMed  Google Scholar 

  39. Dao Q, Krishnaswamy P, Kazanegra R, Harrison A, Amirnovin R, Lenert L, Clopt9n P, Alberto J, Hlavin P, Maisel A S (2001) Utility of B-type natriuretic peptide in the diagnosis of congestive heart failure in an urgent-care setting. JACC 37(2): 379–385

    PubMed  CAS  Google Scholar 

  40. Shapiro B P, Chen H H, Burnett J C, Redfield M M (2003) Use of plasma brain natriuretic peptide concentration to aid in the diagnosis of heart failure. Mayo Clin Proc 78: 481–486

    Article  PubMed  CAS  Google Scholar 

  41. Maisel A S, Krishaswamy P, Nowak R M, McCord J, Hollander J E, Due P, Omland T, Storrow A B, Abraham W T, Wu A H B, Clopton P, Steg P G, Westheim A, Knudsen C W, Perez A, Kazanegra R, Herrmann H C, McCullough P A (2002) Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med 347(3): 161–167

    Article  PubMed  CAS  Google Scholar 

  42. Mueller C, Scholer A, Laule-Kilian K, Martina B, Schindler C, Buser P, Pfisterer M, Perruchoud A P (2004) Use of B-type natriuretic peptide in the evaluation and management of acute dyspnea. N Engl J Med 350(7): 647–654

    Article  PubMed  CAS  Google Scholar 

  43. Hedberg P, Lönnberg I, Jonason T, Nilsson G, Pehrsson K, Ringqvist I (2004) Electrocardiogram and B-type natriuretic peptide as screening tools for left ventricular systolic dysfunction in a population-based sample of 75-year-old men and women. Am Heart J 148: 524–529

    Article  PubMed  CAS  Google Scholar 

  44. Hansen M S, Stanton E B, Gawad Y, Packer M, Pitt B, Swedberg K, Rouleau J L (2002) Relation of circulating cardiac myosin light chain 1 isoform in stable severe congestive heart failure to survival and treatment with Flosequin. Am J Cardiol 90: 969–973

    Article  PubMed  CAS  Google Scholar 

  45. Olivetti G, Abbi R, Yuaini F, Kajstury J, Cheng W, Natahara J A, Yuaini E, Di Loreto C, Feltrami C A, Krajewski S, Reed J C, Anversa P (1997) Apoptosis in the failing human heart. N Engl J Med 336(16): 1131–1141

    Article  PubMed  CAS  Google Scholar 

  46. Hillis GS, Zhao N, Taggart P, Dalsey W C, Mangione A (1999) Utility of cardiac troponin I, creatine kinase MB mass, myosin light cahin 1, and myoglobin in the early in-hospital triage of „high risk“ patients with chest pain. Heart 82: 614–620

    PubMed  CAS  Google Scholar 

  47. Isobe M, Nagai R, Ueda S, Tsuchimochi H, Nakaoka H, Takaku F, Yamaguchi T, Machii K, Nobuyoshi M, Yazaki Y (1987) Quantitative relationship between left ventricular function and serum cardiac myosin lieght chain I levels after koronary reperfusion in patients with acute mayocardial infarction. Circulation 76(6): 1251–1261

    PubMed  CAS  Google Scholar 

  48. Katus H A, Diederich K W, Hoberg E, Kubler W (1988) Circulating cardiac myosin light chains in patients with angina at rest: identification of a high risk subgroup. J Am Coll Cardiol 11(3): 487–493

    Article  PubMed  CAS  Google Scholar 

  49. Kawai Y, Yoshida M, Arakawa K, Kumamoto T, Morikawa N, Masamura K, Tada H, Ito S, Hoshizaki H, Oshima S, Taniguchi K, Terasawa H, Miyamori I, Kishi K, Yasuda T (2004) Diagnostic use of serum deoxyribonucleae I activity as a novel early-phase marker in acute myocardial infarction. Circulation 109: 2398–2400

    Article  PubMed  CAS  Google Scholar 

  50. Yao M, Keogh A, Spratt P, dos Remedios C G, Kiessling P C (1996) Elevated Dnase I levels in human idiopathic dilated cardiomyopathy: an indicator of apoptosis? J Mol Cell Cardiol 28(1): 95–101

    Article  PubMed  CAS  Google Scholar 

  51. Dawber T R, Kannel W B, Revotskie N, Stokes J I, Kagan A, Gordon T (1959) Some factors associated with the development of coronary heart disease; six years’ follow-up experience in the Framingham Study. Am J Public Health 49: 1349–1356

    Article  CAS  Google Scholar 

  52. Wilson P W F, D’Agostino R B, Levy D, Belanger A M, Silbershatz H, Kannel W B (1998) Prediction of coronary heart disease using risk factor categories. Circulation 97: 1837–1847

    PubMed  CAS  Google Scholar 

  53. Assmann G, Cullen P, Schulte H (2002) Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Münster (PROCAM) study. Circulation 105: 310–315

    Article  PubMed  Google Scholar 

  54. Ross R, Glomset J A (1976) The pathogenesis of atherosclerosis (first & second part). N Engl J Med 295(7): 369–377 & 295 (8): 420–425

    Article  PubMed  CAS  Google Scholar 

  55. Ervin R B, Wright J D, Wang C Y, Kennedy-Stephenson J (2004) Dietary intake of fats and fatty acids for the United States population: 1999–2000. Advance data from vital and health statistics; no 348. National Center for Health Statistics, Hyattsville, Maryland

    Google Scholar 

  56. Obisesan T O, Aliyu M H, Adediran A S, Bond V, Maxwell C J, Rotimi C N (2004) Correlates of serum lipoprotein (A) in children and adolescents in the United States. The third National Health Nutrition and Examination Survey (NHANES-III). Lipids in Health and Disease 3(29)

    Google Scholar 

  57. Stanger O (2004) Homocystein — Grundlagen, Klinik, Therapie, Prävention. Verlag Wilhelm Maudrich Wien, München, Bern

    Google Scholar 

  58. Benditt E P, Barrett T, McDougall J K (1983) Viruses in the etiology of atherosclerosis. Proc Natl Acad Sci USA 80: 6386–6389

    Article  PubMed  CAS  Google Scholar 

  59. Melnick J L, Adam E, DeBakey M E (1993) Cytomegalovirus and atherosclerosis. Eur Heart J 14[Suppl K]: 30–38

    PubMed  Google Scholar 

  60. Valantine H A (2004) The role of viruses in cardiac allograft vasculopathy. Am J Transplant 4(2): 169–177

    Article  PubMed  Google Scholar 

  61. Chiu B, Viira E, Tucker W, Fong IW (1997) Chlamydia pneumonite, cytomegalovirus, and herpes simplex virus in atherosclerosis of the carotid artery. Circulation 96(7): 2144–2148

    PubMed  CAS  Google Scholar 

  62. Latsios G, Saetta A, Michalopoulos N V, Agapitos E, Patsouris E (2004) Detection of cytomegalovirus, Helicobacter pylori and Clamydia pneumoniae DNA in carotid atherosclerotic plaques by the polymerase chain reaction. Acta Cardiol 59(6): 652–657

    Article  PubMed  Google Scholar 

  63. Marenberg M E, Risch N, Berkman L F, Floderus B, de Faire U (1994) Genetic susceptibility to death from coronary heart disease in a study of twins. N Engl J Med 330: 1041–1046

    Article  PubMed  CAS  Google Scholar 

  64. Michaels L (1966) Aetiology of coronary artery disease: An historical approach. Br Heart J 28: 258–264

    Article  PubMed  CAS  Google Scholar 

  65. Ryle J A, Russell W T (1949) The natural history of coronary disease: A clinical and epidemiological study. Br Heart J 11: 370–391

    Article  PubMed  CAS  Google Scholar 

  66. Tai E S, Tan C E (2004) Genes, diet and serum lipid concentrations: lessons from ethically diverse populations and their relevance to coronary heart diesease in Asia. Curr Opin Lipidol 15: 5–12

    Article  PubMed  CAS  Google Scholar 

  67. Ordovas J M, Corella D, Demissie S, Cupples A, Couture P, Coltell O, Wilson P W F, Schaefer E J, Tucker K L (2002) Dietary fat intake determines the effect of a common polymorphism in the hepatic lipase gene promoteron hght-density lipoprotein metabolism. Circulation 106: 2315–2321

    Article  PubMed  CAS  Google Scholar 

  68. Ilveskoski E, Perola M, Lehtimäki T, Lappala P, Savolainen V, Pajarinen J, Penttilä A, Lalu K H, Männikkö A, Liesto K K, Koivula T, Karhunen P J (1999) Age-dependent association of apolipoprotein E genotype with coronary and aortic atherosclerosis in middle-aged men. Circulation 100: 608–613

    PubMed  CAS  Google Scholar 

  69. Hong S H, Park W H, Lee C C, Song J H, Kim J Q (1997) Association between genetic variations of aop AI-CIII-AIV cluster gene and hypertriglyceridemic subjects. Clin Chem 43(1): 13–17

    PubMed  CAS  Google Scholar 

  70. Myant N B (1993) Familial defective apopipoprotein B-100:a review, including comparisons with familial hypercholesterolaemia. Atherosclerosis 104(1–2): 1–18

    Article  PubMed  CAS  Google Scholar 

  71. Couture P, Otvos J D, Cupples L A, Wilson P W F, Schaefer E J, Ordovas J M (1999) Association of the A-204C polymorphism in the cholesterol 7α-hydroxylase gene with variations in plasma low density lipoprotein cholesterol levels in the Framingham Offspring Study. J Lipid Res 40: 1883–1889

    PubMed  CAS  Google Scholar 

  72. Doris P A (2002) Hypertension genetics, single nucleotide polymorphisms, and the common disease: Common variant hypothesis. Hypertension 39: 323–331

    Article  PubMed  CAS  Google Scholar 

  73. Williams M S, Bray P F (2001) Genetics of arterial prothrombotic risk states. Exp Biol Med 226(5): 409–419

    CAS  Google Scholar 

  74. Yamada Y, Izawa H, Ichihara S, Takatsu F, Ishihara H, Hirayama H, Sone T, Tanaka M, Yokota M (2002) Prediciton of the risk of myocardial infarction from polymorphisms in candidate genes. N Engl J Med 347: 1916–1923

    Article  PubMed  CAS  Google Scholar 

  75. Pasotti M, Repetto A, Gavazzi L, Arbustivi E (2004) Genetic predisposition to heart failure. Med Clin N Am 88: 1173–1192

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Halwachs-Baumann, G. (2011). Kardiale Labordiagnostik. In: Labormedizin. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0203-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0203-9_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0202-2

  • Online ISBN: 978-3-7091-0203-9

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics