Skip to main content

The packing of ribosomes in crystals and polysomes

  • Chapter
Ribosomes

Abstract

Many structures of the bacterial ribosome have been determined at high resolution by x-ray crystallography over the past few years. These structures span a number of steps in the protein elongation and termination cycle, and include a wide variety of conformations of the ribosome. While these structures are landmarks in our understanding of protein synthesis, the very fact that ribosomes crystallize at all is quite striking. Notably, bacterial ribosomes pack in most of the crystal forms by recapitulating the organization of polysomes. While not all bacterial polysomes adopt the same overall architecture, the fact that ribosome crystals recapitulate common forms of polysomes has structural implications for how these polysomes function. We show that ribosome packing in crystals can be correlated with ribosome organization in active polysomes if ribosome dynamics are considered. The packing arrangement also suggests possible means for polysome regulation that may be used in bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamski FM, Atkins JF, Gesteland RF (1996) Ribosomal protein L9 interactions with 23 S rRNA: the use of a translational bypass assay to study the effect of amino acid substitutions. J Mol Biol 261: 357–371

    Article  PubMed  CAS  Google Scholar 

  • Arava Y, Boas FE, Brown PO, Herschlag D (2005) Dissecting eukaryotic translation and its control by ribosome density mapping. Nucleic Acids Res 33: 2421–2432

    Article  PubMed  CAS  Google Scholar 

  • Arava Y, Wang Y, Storey JD, Liu CL, Brown PO, Herschlag D (2003) Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 100: 3889–3894

    Article  PubMed  CAS  Google Scholar 

  • Berk V, Zhang W, Pai RD, Cate JH (2006) Structural basis for mRNA and tRNA positioning on the ribosome. Proc Natl Acad Sci USA 103: 15830–15834

    Article  PubMed  CAS  Google Scholar 

  • Blaha G, Stanley RE, Steitz TA (2009) Formation of the first peptide bond: the structure of EF-P bound to the 70S ribosome. Science 325: 966–970

    Article  PubMed  CAS  Google Scholar 

  • Brandt F, Etchells SA, Ortiz JO, Elcock AH, Hartl FU, Baumeister W (2009) The native 3D organization of bacterial polysomes. Cell 136: 261–271

    Article  PubMed  CAS  Google Scholar 

  • Burmann BM, Schweimer K, Luo X, Wahl MC, Stitt BL, Gottesman ME, Rosch P (2010) A NusE:NusG complex links transcription and translation. Science 328: 501–504

    Article  PubMed  CAS  Google Scholar 

  • Cannarozzi G, Schraudolph NN, Faty M, von Rohr P, Friberg MT, Roth AC, Gonnet P, Gonnet G, Barral Y (2010) A role for codon order in translation dynamics. Cell 141: 355–367

    Article  PubMed  CAS  Google Scholar 

  • Cannone JJ, Subramanian S, Schnare MN, Collett JR, D’Souza LM, Du Y, Feng B, Lin N, Madabusi LV, Muller KM, Pande N, Shang Z, Yu N, Gutell RR (2002) The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3: 2

    Article  PubMed  Google Scholar 

  • Cate JH, Yusupov MM, Yusupova GZ, Earnest TN, Noller HN (1999) X-ray crystal structures of 70S ribosome functional complexes. Science 285: 2095–2104

    Article  PubMed  CAS  Google Scholar 

  • Chang SL, Szabo A, Tjandra N (2003) Temperature dependence of domain motions of calmodulin probed by NMR relaxation at multiple fields. J Am Chem Soc 125: 11379–11384

    Article  PubMed  CAS  Google Scholar 

  • Christensen AK, Bourne CM (1999) Shape of large bound polysomes in cultured fibroblasts and thyroid epithelial cells. Anat Rec 255: 116–129

    Article  PubMed  CAS  Google Scholar 

  • Christensen AK, Kahn LE, Bourne CM (1987) Circular polysomes predominate on the rough endoplasmic reticulum of somatotropes and mammotropes in the rat anterior pituitary. Am J Anat 178: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Cornish PV, Ermolenko DN, Staple DW, Hoang L, Hickerson RP, Noller HF, Ha T (2009) Following movement of the L1 stalk between three functional states in single ribosomes. Proc Natl Acad Sci USA 106: 2571–2576

    Article  PubMed  Google Scholar 

  • Dunkle JA, Cate JH (2010) Ribosome structure and dynamics during translocation and termination. Annu Rev Biophys 39: 227–244

    Article  PubMed  CAS  Google Scholar 

  • Ellis RJ (2001) Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci 26: 597–604

    Article  PubMed  CAS  Google Scholar 

  • Farwell MA, Roberts MW, Rabinowitz JC (1992) The effect of ribosomal protein S1 from Escherichia coli and Micrococcus luteus on protein synthesis in vitro by E. coli and Bacillus subtilis. Mol Microbiol 6: 3375–3383

    Article  PubMed  CAS  Google Scholar 

  • Fei J, Bronson JE, Hofman JM, Srinivas RL, Wiggins CH, Gonzalez RL, Jr (2009) Allosteric collaboration between elongation factor G and the ribosomal L1 stalk directs tRNA movements during translation. Proc Natl Acad Sci USA 106: 15702–15707

    Article  PubMed  Google Scholar 

  • Fei J, Kosuri P, MacDougall DD, Gonzalez RL, Jr (2008) Coupling of ribosomal L1 stalk and tRNA dynamics during translation elongation. Mol Cell 30: 348–359

    Article  PubMed  CAS  Google Scholar 

  • Fischer N, Konevega AL, Wintermeyer W, Rodnina MV, Stark H (2010) Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy. Nature 466: 329–333

    Article  PubMed  CAS  Google Scholar 

  • Gabashvili IS, Agrawal RK, Spahn CM, Grassucci RA, Svergun DI, Frank J, Penczek P (2000) Solution structure of the E. coli 70S ribosome at 11.5 A resolution. Cell 100: 537–549

    Article  PubMed  CAS  Google Scholar 

  • Gao YG, Selmer M, Dunham CM, Weixlbaumer A, Kelley AC, Ramakrishnan V (2009) The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science 326: 694–699

    Article  PubMed  CAS  Google Scholar 

  • Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31: 3784–3788

    Article  PubMed  CAS  Google Scholar 

  • Herbst KL, Nichols LM, Gesteland RF, Weiss RB (1994) A mutation in ribosomal protein L9 affects ribosomal hopping during translation of gene 60from bacteriophage T4. Proc Natl Acad Sci USA 91: 12525–12529

    Article  PubMed  CAS  Google Scholar 

  • Herr AJ, Gesteland RF, Atkins JF (2000) One protein from two open reading frames: mechanism of a 50 nt translational bypass. EMBO J 19: 2671–2680

    Article  PubMed  CAS  Google Scholar 

  • Herr AJ, Nelson CC, Wills NM, Gesteland RF, Atkins JF (2001) Analysis of the roles of tRNA structure, ribosomal protein L9, and the bacteriophage T4 gene 60 bypassing signals during ribosome slippage on mRNA. J Mol Biol 309: 1029–1048

    Article  PubMed  CAS  Google Scholar 

  • Hoffman DW, Davies C, Gerchman SE, Kycia JH, Porter SJ, White SW, Ramakrishnan V (1994) Crystal structure of prokaryotic ribosomal protein L9: a bi-lobed RNA-binding protein. EMBO J 13: 205–212

    PubMed  CAS  Google Scholar 

  • Huang WM, Ao SZ, Casjens S, Orlandi R, Zeikus R, Weiss R, Winge D, Fang M (1988) A persistent untranslated sequence within bacteriophage T4 DNA topoisomerase gene 60. Science 239: 1005–1012

    Article  PubMed  CAS  Google Scholar 

  • Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324: 218–223

    Article  PubMed  CAS  Google Scholar 

  • Jenner LB, Demeshkina N, Yusupova G, Yusupov M (2010) Structural aspects of messenger RNA reading frame maintenance by the ribosome. Nat Struct Mol Biol 17: 555–560

    Article  PubMed  CAS  Google Scholar 

  • Kopeina GS, Afonina ZA, Gromova KV, Shirokov VA, Vasiliev VD, Spirin AS (2008) Step-wise formation of eukaryotic double-row polyribosomes and circular translation of polysomal mRNA. Nucleic Acids Res 36: 2476–2488

    Article  PubMed  CAS  Google Scholar 

  • Korostelev A, Trakhanov S, Laurberg M, Noller HF (2006) Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell 126: 1065–1077

    Article  PubMed  CAS  Google Scholar 

  • Laursen BS, Sorensen HP, Mortensen KK, Sperling-Petersen HU (2005) Initiation of protein synthesis in bacteria. Microbiol Mol Biol Rev 69: 101–123

    Article  PubMed  CAS  Google Scholar 

  • Lieberman KR, Firpo MA, Herr AJ, Nguyenle T, Atkins JF, Gesteland RF, Noller HF (2000) The 23 S rRNA environment of ribosomal protein L9 in the 50 S ribosomal subunit. J Mol Biol 297: 1129–1143

    Article  PubMed  CAS  Google Scholar 

  • Madin K, Sawasaki T, Kamura N, Takai K, Ogasawara T, Yazaki K, Takei T, Miura K, Endo Y (2004) Formation of circular polyribosomes in wheat germ cell-free protein synthesis system. FEBS Lett 562: 155–159

    Article  PubMed  CAS  Google Scholar 

  • Maldonado R, Herr AJ (1998) Efficiency of T4 gene 60 translational bypassing. J Bacteriol 180: 1822–1830

    PubMed  CAS  Google Scholar 

  • Matadeen R, Patwardhan A, Gowen B, Orlova EV, Pape T, Cuff M, Mueller F, Brimacombe R, van Heel M ( 1999) The Escherichia coli large ribosomal subunit at 7.5 A resolution. Structure Fold Des 7: 1575–1583

    Article  PubMed  CAS  Google Scholar 

  • Miller OL,Jr., Hamkalo BA, Thomas CA, Jr (1970) Visualization of bacterial genes in action. Science 169: 392–395

    Article  PubMed  Google Scholar 

  • Munro JB, Altman RB, Tung CS, Cate JH, Sanbonmatsu KY, Blanchard SC (2010a) Spontaneous formation of the unlocked state of the ribosome is a multistep process. Proc Natl Acad Sci USA 107: 709–714

    Article  PubMed  Google Scholar 

  • Munro JB, Altman RB, Tung CS, Sanbonmatsu KY, Blanchard SC (2010b) A fast dynamic mode of the EF-G-bound ribosome. Embo J 29: 770–781

    Article  PubMed  CAS  Google Scholar 

  • Munro JB, Sanbonmatsu KY, Spahn CM, Blanchard SC (2009) Navigating the ribosome’s metastable energy landscape. Trends Biochem Sci 34: 390–400

    Article  PubMed  CAS  Google Scholar 

  • Ortiz JO, Brandt F, Matias VR, Sennels L, Rappsilber J, Scheres SH, Eibauer M, Hartl FU, Baumeister W. Structure of hibernating ribosomes studied by cryoelectron tomography in vitro and in situ. J Cell Biol 190: 613–621

    Google Scholar 

  • Petry S, Brodersen DE, Murphy FVt, Dunham CM, Selmer M, Tarry MJ, Kelley AC, Ramakrishnan V (2005) Crystal structures of the ribosome in complex with release factors RF1 and RF2 bound to a cognate stop codon. Cell 123: 1255–1266

    Article  PubMed  CAS  Google Scholar 

  • Proshkin S, Rahmouni AR, Mironov A, Nudler E (2010) Cooperation between translating ribosomes and RNA polymerase in transcription elongation. Science 328: 504–508

    Article  PubMed  CAS  Google Scholar 

  • Ramu H, Mankin A, Vazquez-Laslop N (2009) Programmed drug-dependent ribosome stalling. Mol Microbiol 71: 811–824

    Article  PubMed  CAS  Google Scholar 

  • Schmeing TM, Ramakrishnan V (2009) What recent ribosome structures have revealed about the mechanism of translation. Nature 461: 1234–1242

    Article  PubMed  CAS  Google Scholar 

  • Schmeing TM, Voorhees RM, Kelley AC, Gao YG, Murphy FVt, Weir JR, Ramakrishnan V (2009) The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science 326: 688–694

    Article  PubMed  CAS  Google Scholar 

  • Schuwirth BS, Borovinskaya MA, Hau CW, Zhang W, Vila-Sanjurjo A, Holton JM, Cate JH (2005) Structures of the bacterial ribosome at 3.5 A resolution. Science 310: 827–834

    Article  PubMed  CAS  Google Scholar 

  • Selmer M, Dunham CM, Murphy FVt, Weixlbaumer A, Petry S, Kelley AC, Weir JR, Ramakrishnan V (2006) Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313: 1935–1942

    Article  PubMed  CAS  Google Scholar 

  • Sengupta J, Agrawal RK, Frank J (2001) Visualization of protein S1 within the 30S ribosomal subunit and its interaction with messenger RNA. Proc Natl Acad Sci USA 98: 11991–11996

    Article  PubMed  CAS  Google Scholar 

  • Simonetti A, Marzi S, Jenner L, Myasnikov A, Romby P, Yusupova G, Klaholz BP, Yusupov M (2009) A structural view of translation initiation in bacteria. Cell Mol Life Sci 66: 423–436

    Article  PubMed  CAS  Google Scholar 

  • Sorensen MA, Fricke J, Pedersen S (1998) Ribosomal protein S1 is required for translation of most, if not all, natural mRNAs in Escherichia coli in vivo. J Mol Biol 280: 561–569

    Article  PubMed  CAS  Google Scholar 

  • Sorokin A, Serror P, Pujic P, Azevedo V, Ehrlich SD (1995) The Bacillus subtilis chromosome region encoding homologues of the Escherichia coli mssA and rpsA gene products. Microbiology 141 (Pt 2):311–319

    Article  PubMed  CAS  Google Scholar 

  • Spahn CM, Gomez-Lorenzo MG, Grassucci RA, Jorgensen R, Andersen GR, Beckmann R, Penczek PA, Ballesta JP, Frank J (2004) Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation. EMBO J 23: 1008–1019

    Article  PubMed  CAS  Google Scholar 

  • Thompson J, Kim DF, O’Connor M, Lieberman KR, Bayfield MA, Gregory ST, Green R, Noller HF, Dahlberg AE (2001) Analysis of mutations at residues A2451 and G2447 of 23S rRNA in the peptidyltransferase active site of the 50S ribosomal subunit. Proc Natl Acad Sci USA 98: 9002–9007

    Article  PubMed  CAS  Google Scholar 

  • Uemura S, Aitken CE, Korlach J, Flusberg BA, Turner SW, Puglisi JD (2010) Real-time tRNA transit on single translating ribosomes at codon resolution. Nature 464: 1012–1017

    Article  PubMed  CAS  Google Scholar 

  • Underwood KA, Swartz JR, Puglisi JD (2005) Quantitative polysome analysis identifies limitations in bacterial cell-free protein synthesis. Biotechnol Bioeng 91: 425–435

    Article  PubMed  CAS  Google Scholar 

  • Wells SE, Hillner PE, Vale RD, Sachs AB (1998) Circularization of mRNA by eukaryotic translation initiation factors. Mol Cell 2: 135–140

    Article  PubMed  CAS  Google Scholar 

  • Wills NM, O’Connor M, Nelson CC, Rettberg CC, Huang WM, Gesteland RF, Atkins JF (2008) Translational bypassing without peptidyl-tRNA anticodon scanning of coding gap mRNA. EMBO J 27: 2533–2544

    Article  PubMed  CAS  Google Scholar 

  • Wilson DN, Nierhaus KH (2007) The weird and wonderful world of bacterial ribosome regulation. Crit Rev Biochem Mol Biol 42: 187–219

    Article  PubMed  CAS  Google Scholar 

  • Wilson MA, Brunger AT (2000) The 1.0 A crystal structure of Ca(2+)-bound calmodulin: an analysis of disorder and implications for functionally relevant plasticity. J Mol Biol 301: 1237–1256

    Article  PubMed  CAS  Google Scholar 

  • Yamami T, Ito K, Fujiwara T, Nakamura Y (2005) Heterologous expression of Aquifex aeolicus ribosome recycling factor in Escherichia coli is dominant lethal by forming a complex that lacks functional co-ordination for ribosome disassembly. Mol Microbiol 55: 150–161

    Article  PubMed  CAS  Google Scholar 

  • Yusupova G, Jenner L, Rees B, Moras D, Yusupov M (2006) Structural basis for messenger RNA movement on the ribosome. Nature 444: 391–394

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Dunkle JA, Cate JH (2009) Structures of the ribosome in intermediate states of ratcheting. Science 325: 1014–1017

    Article  PubMed  CAS  Google Scholar 

  • Zouridis H, Hatzimanikatis V (2007) A model for protein translation: polysome self-organization leads to maximum protein synthesis rates. Biophys J 92: 717–730

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Dunkle, J.A., Cate, J.H.D. (2011). The packing of ribosomes in crystals and polysomes. In: Rodnina, M.V., Wintermeyer, W., Green, R. (eds) Ribosomes. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0215-2_6

Download citation

Publish with us

Policies and ethics