Skip to main content

Future Directions of Atherosclerosis Research and Translation into Clinical Application

  • Chapter
  • First Online:
Inflammation and Atherosclerosis
  • 1967 Accesses

Abstract

Atherosclerosis, a disease of the large and medial arteries, is the primary cause of 3 heart disease, stroke and gangrene of the extremities. In westernized societies, it is 4 the underlying cause of about 50% of all deaths. Atherosclerosis is a multifactorial 5 disease induced by the effects of various risk factors on appropriate genetic 6 backgrounds. Many factors, such as hypercholesterolemia, modified lipoproteins, 7 hypertension, diabetes mellitus, infections, and smoking are identified as being 8 involved in the development of the disease [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ross R (1979) The pathogenesis of atherosclerosis. Mech Ageing Dev 9:435–440

    Article  PubMed  CAS  Google Scholar 

  2. Stary HC, Chandler AB, Glagov S, Guyton JR, Insull W Jr, Rosenfeld ME, Schaffer SA, Schwartz CJ, Wagner WD, Wissler RW (1994) A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 89:2462–2478

    PubMed  CAS  Google Scholar 

  3. Steinberg D (2002) Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime. Nat Med 8:1211–1217

    Article  PubMed  CAS  Google Scholar 

  4. Goldstein JL, Kita T, Brown MS (1983) Defective lipoprotein receptors and atherosclerosis. Lessons from an animal counterpart of familial hypercholesterolemia. N Engl J Med 309:288–296

    Article  PubMed  CAS  Google Scholar 

  5. Brown MS, Goldstein JL (1984) How LDL receptors influence cholesterol and atherosclerosis. Sci Am 251:58–66

    Article  PubMed  CAS  Google Scholar 

  6. Ross R (1993) Atherosclerosis – an inflammatory disease. N Engl J Med 340:115–126

    Google Scholar 

  7. Wick G, Kloflach M, Xu Q (2004) Autoimmune and inflammatory mechanisms in atherosclerosis. Annu Rev Immunol 22:361–403

    Article  PubMed  CAS  Google Scholar 

  8. Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352:1685–1695

    Article  PubMed  CAS  Google Scholar 

  9. Witztum JL, Steinberg D (2001) The oxidative modification hypothesis of atherosclerosis: does it hold for humans? Trends Cardiovasc Med 11:93–102

    Article  PubMed  CAS  Google Scholar 

  10. Hirsch AT, Criqui MH, Treat-Jacobson D, Regensteiner JG, Creager MA, Olin JW, Krook SH, Hunninghake DB, Comerota AJ, Walsh ME, McDermott MM, Hiatt WR (2001) Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA 286:1317–1324

    Article  PubMed  CAS  Google Scholar 

  11. Dimmeler S, Rippmann V, Weiland U, Haendeler J, Zeiher AM (1997) Angiotensin II induces apoptosis of human endothelial cells. Protective effect of nitric oxide. Circ Res 81:970–976

    PubMed  CAS  Google Scholar 

  12. Mach F, Schonbeck U, Sukhova GK, Atkinson E, Libby P (1998) Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature 394:200–203

    Article  PubMed  CAS  Google Scholar 

  13. Wick G, Kleindienst R, Schett G, Amberger A, Xu Q (1995) Role of heat shock protein 65/60 in the pathogenesis of atherosclerosis. Int Arch Allergy Immunol 107:130–131

    Article  PubMed  CAS  Google Scholar 

  14. Wick G, Schett G, Amberger A, Kleindienst R, Xu Q (1995) Is atherosclerosis an immunologically mediated disease? Immunol Today 16:27–33

    Article  PubMed  CAS  Google Scholar 

  15. Xu Q (2000) Biomechanical-stress-induced signaling and gene expression in the development of arteriosclerosis. Trends Cardiovasc Med 10:35–41

    Article  PubMed  CAS  Google Scholar 

  16. Xu Q (2009) Disturbed flow-enhanced endothelial turnover in atherosclerosis. Trends Cardiovasc Med 19:191–195

    Article  PubMed  CAS  Google Scholar 

  17. Li C, Xu Q (2007) Mechanical stress-initiated signal transduction in vascular smooth muscle cells in vitro and in vivo. Cell Signal 19:881–891

    Article  PubMed  CAS  Google Scholar 

  18. Collins RG, Velji R, Guevara NV, Hicks MJ, Chan L, Beaudet AL (2000) P-Selectin or intercellular adhesion molecule (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice. J Exp Med 191:189–194

    Article  PubMed  CAS  Google Scholar 

  19. Zou Y, Hu Y, Mayr M, Dietrich H, Wick G, Xu Q (2000) Reduced neointima hyperplasia of vein bypass grafts in intercellular adhesion molecule-1-deficient mice. Circ Res 86:434–440

    PubMed  CAS  Google Scholar 

  20. Bhullar IS, Li YS, Miao H, Zandi E, Kim M, Shyy JY, Chien S (1998) Fluid shear stress activation of IkappaB kinase is integrin-dependent. J Biol Chem 273:30544–30549

    Article  PubMed  CAS  Google Scholar 

  21. Zampetaki A, Zhang Z, Hu Y, Xu Q (2005) Biomechanical stress induces IL-6 expression in smooth muscle cells via Ras/Rac1-p38 MAPK-NF-kappaB signaling pathways. Am J Physiol Heart Circ Physiol 288:H2946–H2954

    Article  PubMed  CAS  Google Scholar 

  22. Manka DR, Wiegman P, Din S, Sanders JM, Green SA, Gimple LW, Ragosta M, Powers ER, Ley K, Sarembock IJ (1999) Arterial injury increases expression of inflammatory adhesion molecules in the carotid arteries of apolipoprotein-E-deficient mice. J Vasc Res 36:372–378

    Article  PubMed  CAS  Google Scholar 

  23. Sakihama H, Masunaga T, Yamashita K, Hashimoto T, Inobe M, Todo S, Uede T (2004) Stromal cell-derived factor-1 and CXCR4 interaction is critical for development of transplant arteriosclerosis. Circulation 110:2924–2930

    Article  PubMed  CAS  Google Scholar 

  24. Schober A, Knarren S, Lietz M, Lin EA, Weber C (2003) Crucial role of stromal cell-derived factor-1alpha in neointima formation after vascular injury in apolipoprotein E-deficient mice. Circulation 108:2491–2497

    Article  PubMed  CAS  Google Scholar 

  25. Gao C, Li Y (2007) SDF-1 plays a key role in the repairing and remodeling process on rat allo-orthotopic abdominal aorta grafts. Transpl Proc 39:268–272

    Article  CAS  Google Scholar 

  26. Alkhatib B, Freguin-Bouilland C, Lallemand F, Henry JP, Litzler PY, Marie JP, Richard V, Thuillez C, Plissonnier D (2006) Low molecular weight fucan prevents transplant coronaropathy in rat cardiac allograft model. Transpl Immunol 16:14–19

    Article  PubMed  CAS  Google Scholar 

  27. Freguin-Bouilland C, Alkhatib B, David N, Lallemand F, Henry JP, Godin M, Thuillez C, Plissonnier D (2007) Low molecular weight fucoidan prevents neointimal hyperplasia after aortic allografting. Transplantation 83:1234–1241

    Article  PubMed  CAS  Google Scholar 

  28. Akyurek ML, Funa K, Wanders A, Larsson E, Fellstrom BC (1995) Expression of CD11b and ICAM-1 in an in vivo model of transplant arteriosclerosis. Transpl Immunol 3:107–113

    Article  PubMed  CAS  Google Scholar 

  29. Koskinen PK, Lemstrom KB (1997) Adhesion molecule P-selectin and vascular cell adhesion molecule-1 in enhanced heart allograft arteriosclerosis in the rat. Circulation 95:191–196

    PubMed  Google Scholar 

  30. Zampetaki A, Kirton JP, Xu Q (2008) Vascular repair by endothelial progenitor cells. Cardiovasc Res 78:413–421

    Article  PubMed  CAS  Google Scholar 

  31. Xu Q (2008) Stem cells and transplant arteriosclerosis. Circ Res 102:1011–1024

    Article  PubMed  CAS  Google Scholar 

  32. Kissel CK, Lehmann R, Assmus B, Aicher A, Honold J, Fischer-Rasokat U, Heeschen C, Spyridopoulos I, Dimmeler S, Zeiher AM (2007) Selective functional exhaustion of hematopoietic progenitor cells in the bone marrow of patients with postinfarction heart failure. J Am Coll Cardiol 49:2341–2349

    Article  PubMed  Google Scholar 

  33. Stary HC (1989) Evolution and progression of atherosclerotic lesions in coronary arteries of children and young adults. Arteriosclerosis 9:I19–I32

    PubMed  CAS  Google Scholar 

  34. Wang TJ, Nam BH, Wilson PW, Wolf PA, Levy D, Polak JF, D’Agostino RB, O’Donnell CJ (2002) Association of C-reactive protein with carotid atherosclerosis in men and women: the Framingham Heart Study. Arterioscler Thromb Vasc Biol 22:1662–1667

    Article  PubMed  CAS  Google Scholar 

  35. Schachinger V, Britten MB, Zeiher AM (2000) Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 101:1899–1906

    PubMed  CAS  Google Scholar 

  36. Libby P, Sukhova G, Lee RT, Galis ZS (1995) Cytokines regulate vascular functions related to stability of the atherosclerotic plaque. J Cardiovasc Pharmacol 25(Suppl 2):S9–S12

    Article  PubMed  CAS  Google Scholar 

  37. Ridker PM, Hennekens CH, Buring JE, Rifai N (2000) C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 342:836–843

    Article  PubMed  CAS  Google Scholar 

  38. Shah PK (1999) Plaque disruption and thrombosis. Potential role of inflammation and infection. Cardiol Clin 17:271–281

    Article  PubMed  CAS  Google Scholar 

  39. Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105:1135–1143

    Article  PubMed  CAS  Google Scholar 

  40. Rudd JH, Fayad ZA (2008) Imaging atherosclerotic plaque inflammation. Nat Clin Pract Cardiovasc Med 5(Suppl 2):S11–S17

    Article  PubMed  Google Scholar 

  41. Li KC, Bednarski MD (2002) Vascular-targeted molecular imaging using functionalized polymerized vesicles. J Magn Reson Imaging 16:388–393

    Article  PubMed  Google Scholar 

  42. Kolodgie FD, Narula J, Burke AP, Haider N, Farb A, Hui-Liang Y, Smialek J, Virmani R (2000) Localization of apoptotic macrophages at the site of plaque rupture in sudden coronary death. Am J Pathol 157:1259–1268

    Article  PubMed  CAS  Google Scholar 

  43. Moses JW, Leon MB, Popma JJ, Fitzgerald PJ, Holmes DR, O’Shaughnessy C, Caputo RP, Kereiakes DJ, Williams DO, Teirstein PS, Jaeger JL, Kuntz RE (2003) Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med 349:1315–1323

    Article  PubMed  CAS  Google Scholar 

  44. Geng YJ, Phillips JE, Mason RP, Casscells SW (2003) Cholesterol crystallization and macrophage apoptosis: implication for atherosclerotic plaque instability and rupture. Biochem Pharmacol 66:1485–1492

    Article  PubMed  CAS  Google Scholar 

  45. Freigang S, Horkko S, Miller E, Witztum JL, Palinski W (1998) Immunization of LDL receptor-deficient mice with homologous malondialdehyde-modified and native LDL reduces progression of atherosclerosis by mechanisms other than induction of high titers of antibodies to oxidative neoepitopes. Arterioscler Thromb Vasc Biol 18:1972–1982

    Article  PubMed  CAS  Google Scholar 

  46. Klingenberg R, Lebens M, Hermansson A, Fredrikson GN, Strodthoff D, Rudling M, Ketelhuth DF, Gerdes N, Holmgren J, Nilsson J, Hansson GK (2010) Intranasal immunization with an apolipoprotein B-100 fusion protein induces antigen-specific regulatory T cells and reduces atherosclerosis. Arterioscler Thromb Vasc Biol 30:946–952

    Article  PubMed  CAS  Google Scholar 

  47. Harats D, Yacov N, Gilburd B, Shoenfeld Y, George J (2002) Oral tolerance with heat shock protein 65 attenuates Mycobacterium tuberculosis-induced and high-fat-diet-driven atherosclerotic lesions. J Am Coll Cardiol 40:1333–1338

    Article  PubMed  CAS  Google Scholar 

  48. Xu Q (2006) The impact of progenitor cells in atherosclerosis. Nat Clin Pract Cardiovasc Med 3:94–101

    Article  PubMed  CAS  Google Scholar 

  49. Xu Q (2007) Progenitor cells in vascular repair. Curr Opin Lipidol 18:534–539

    Article  PubMed  CAS  Google Scholar 

  50. Rajagopal V, Rockson SG (2003) Coronary restenosis: a review of mechanisms and management. Am J Med 115:547–553

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingbo Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Xu, Q. (2012). Future Directions of Atherosclerosis Research and Translation into Clinical Application. In: Wick, G., Grundtman, C. (eds) Inflammation and Atherosclerosis. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0338-8_30

Download citation

Publish with us

Policies and ethics