Skip to main content

Bifurcations and Multistability in Periodically Stimulated Cardiac Cells

  • Chapter
  • First Online:
Biosimulation in Biomedical Research, Health Care and Drug Development
  • 1110 Accesses

Abstract

Application of fractal dimensions, Lyapunov exponents, and other measures from dynamical systems theory to characterize the function of the heart has led to extended and quite vivid discussions about how to interpret the observed irregularity of the human heart beat [10]. It is generally accepted that the heart rhythm tends to become more regular with age, but it is also clear that certain conditions that predispose a person for heart failure are reflected in particular patterns of irregular heart beat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adam DR, Akselrod S, Cohen RJ (1981) Estimation of ventricular vulnerability to fibrillation through T wave time series analysis. Comput Cardiol 8:307–310

    Google Scholar 

  2. Arnold VI, Afrajmovich VS, Il’yashenko YS, Shil’nikov LP (1994) Bifurcation theory and catastophe theory, Series: Encyclopaedia of Mathematical Sciens, Vol. 5. Springer, New York

    Google Scholar 

  3. Balanov A, Janson N, Postnov D and Sosnovtseva O (2009) Synchronization: From Simple to Complex. Springer, Berlin

    Google Scholar 

  4. CellML Model Repository (2010): http://models.cellml.org/

  5. Cherry EM, Fenton FH (2004) Suppression of alternans and conduction blocks despite steep APD restitution: electrotonic, memory and conduction velocity effects. Am J Physiol 286:2332–2341

    Google Scholar 

  6. Cherry EM, Fenton FH (2007) A tale of two dogs: analyzing two models of canine ventricular electrophysiology. Am J Physiol Heart Circ Physiol 292:43–55

    Article  Google Scholar 

  7. Chialvo DR, Jalife J (1987) Non-linear dynamics of cardiac excitation and impulse propagation. Nature 330:749–752

    Article  PubMed  CAS  Google Scholar 

  8. Chialvo DR, Michaels D, Jalife J (1990) Supernormal excitability as a mechanism of chaotic dynamics of activation in cardiac Purkinje fibers. Circ Res 66:525–545

    Article  PubMed  CAS  Google Scholar 

  9. Cytrynbaum EN (2004) Periodic stimulus and the single cardiac cell - getting more out of 1D maps. J Theor Biol 229:69–83

    Article  PubMed  Google Scholar 

  10. Glass L (2009) Introduction to controversial topics in nonlinear science: is the normal heart rate chaotic? Chaos 19:028501–028504

    Article  PubMed  Google Scholar 

  11. Goldberger MD, Bahargava V, West BJ, Mandell AJ (1986) Some observations on the question: is ventricular fibrillation ”chaos”? Physica D 19:282–289

    Article  Google Scholar 

  12. Guevara MR (1984) Chaotic Cardiac Dynamics. Doctoral thesis, McGill University, Montreal

    Google Scholar 

  13. Guevara MR, Alonso F, Jeandupeux D, Ginneken ACG (1989) Alternans in periodically stimulated isolated ventricular myocytes: Experiment and model. In: Goldbeter A (ed) Cell to Cell Signalling: From Experiments to Theoretical Models. Harcourt Brace Jovanovich, London

    Google Scholar 

  14. Guevara MR, Glass L, Shrier A (1981) Phase Locking, period-doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells. Science 214:1350–1352

    Article  PubMed  CAS  Google Scholar 

  15. Hall GM, Bahar S, Gauthier DJ (1999) Prevalence of rate dependent behaviors in cardiac muscle. Phys Rev Lett 82:2995–2998

    Article  CAS  Google Scholar 

  16. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    PubMed  CAS  Google Scholar 

  17. Hutter OF, Noble D (1960) Rectifying properties of heart muscle. Nature 188:495

    CAS  Google Scholar 

  18. Jalife J, Delmar M, Anumonwo J, Berenfeld O, Kalifa J (2009) Bioelectricity, in Basic Cardiac Electrophysiology for the Clinician, 2nd edn. Wiley-Blackwell, Oxford

    Book  Google Scholar 

  19. Kalb SS, Dobrovolny HM, Tolkacheva EG, Idriss SF, Krassowska W, Gauthier DJ (2004) The restitution portrait: A new method for investigation rate-dependent restitution. J Cardiovasc Electrophysiol 15:698–709

    Article  PubMed  Google Scholar 

  20. Kléber AG, Rudy Y (2004) Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol Rev 84:431–488

    Article  PubMed  Google Scholar 

  21. Koller ML, Riccio MK, Gilmour RF Jr (1998) Dynamic restitution of action potential duration during electrical alternans and ventricular fibrillation. Am J Physiol Heart Circ Physiol 275:1635–1642

    Google Scholar 

  22. Kurata Y, Hisatome I, Matsuda H, Shibamoto T (2005) Dynamical mechanisms of pacemaker generation in I K1-downregulated human ventricular myocytes: Insights from bifurcation analyses of a mathematical model. Biophys J 89:2865–2887

    Article  PubMed  CAS  Google Scholar 

  23. Lewis TJ, Guevara MR (1990) Chaotic dynamics in an ionic model of the propagated cardiac action potential. J Theor Biol 146:407–432

    Article  PubMed  CAS  Google Scholar 

  24. Luo CH, Rudy Y (1991) A model of the ventricular cardiac action potential. Depolarization, repolarization and their interaction. Circulation 68:1501–1526

    Article  CAS  Google Scholar 

  25. Luo CH, Rudy Y (1994) A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res 74:1071–1096

    CAS  Google Scholar 

  26. Mines GR (1913) On dynamic equilibrium in the heart. J Physiol 46:349–383

    PubMed  CAS  Google Scholar 

  27. Mosekilde M, Maistrenko Yu, Postnov D (2002) Chaotic Synchronization: Applications to Living Systems. World Scientific, Singapore

    Google Scholar 

  28. Munteanu A, Kondratyev AA, Kucera JP (2008) Analysis of damped oscillations during reentry: A new approach to evaluate cardiac restitution. Biophys J 94:1094–1109

    Article  PubMed  CAS  Google Scholar 

  29. Nash MP, Bradley CP, Sutton P, Hayward M, Paterson DJ, Taggart P (2004) Human hearts possess large regions of steep and flat APD restitution. Europace 6:187

    Google Scholar 

  30. Nash MP, Bradley CP, Sutton PM, Hayward M, Paterson DJ, Taggart P (2005) Spatial heterogeneity of action potential duration restitution in humans. Heart Rhythm 2:216–217

    Article  Google Scholar 

  31. Nash MP, Bradley CP, Sutton PM, Clayton RH, Kallis P, Hayward M, Paterson DJ, Taggart P (2006) Whole heart APD restitution properties in cardiac patients: A combined clinical and modeling study. Exp Physiol 91:339–354

    Article  PubMed  Google Scholar 

  32. Noble D (1962) A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pace-maker potentials. J Physiol 160:317–352

    PubMed  CAS  Google Scholar 

  33. Noble D (2002) Modelling the heart: from genes to cells to the whole organ. Science 295:1678–1682

    Article  PubMed  CAS  Google Scholar 

  34. Noble D (2006) The Music of Life. Oxford University Press, Oxford

    Google Scholar 

  35. Noble D (2007) From the Hodgkin-Huxley axon to the virtual heart. J Physiol 580:15–22

    Article  PubMed  CAS  Google Scholar 

  36. Noble D (2008) Computational models of the heart and their use in assessing the actions of drugs. J Pharmacol Sci 107:107–117

    Article  PubMed  CAS  Google Scholar 

  37. Nolasco JB, Dahlen RW (1968) A graphic method for the study of alternation in cardiac action potentials. J Appl Physiol 25:191–196

    Article  PubMed  CAS  Google Scholar 

  38. Oliver RA, Henriquez CS, Krassowska W (2000) Bistability and correlation with arrhythmogenesis in a model of the right atrium. Ann Biomed Eng 33:577–589

    Article  Google Scholar 

  39. Oliver RA, Krassowska W (2005) Reproducing cardiac restitution properties using the Fenton-Karma membrane model. Ann Biomed Eng 33:907–911

    Article  PubMed  Google Scholar 

  40. Pikovsky A, Rosenblum M, Kurths J (2001) Synchronization – A Universal Concept in Nonlinear Sciences. Cambridge University Press, UK

    Book  Google Scholar 

  41. Qu Z (2004) Dynamical effects of diffusive cell coupling on cardiac excitation and propagation: a simulation study. Am J Physiol Heart Circ Physiol 287:2803–2812

    Article  Google Scholar 

  42. Ritzenberg AL, Adam DR, Cohen RJ (1984) Period multypling evidence for nonlinear behaviour of the canine heart. Nature 307:159–161

    Article  PubMed  CAS  Google Scholar 

  43. Rubart M, Zipes D (2005) Mechanisms of sudden cardiac death. J Clin Investig 115:2305–2315

    Article  PubMed  CAS  Google Scholar 

  44. Samie FH, Mandapati R, Gray RA, Watanabe Y, Zuur C, Beaumont J, Jalife J (2000) A mechanism of transition from ventricular fibrillation to tachycardia. Effect of calcium channel blockade on the dynamics of rotating waves. Circ Res 86:684–691

    CAS  Google Scholar 

  45. Savino GV, Romanelli L, González DL, Piro O, Valentinuzzi ME (1989) Evidence for chaotic behavior in driven ventricles. Biophys J 56:273–280

    Article  PubMed  CAS  Google Scholar 

  46. Smith NP, Mulquiney PJ, Nash MP, Bradley CP, Nickerson DP, Hunter PJ (2001) Mathematical modelling of the heart: cell to organ. Chaos Solitons Fractals 13:1613–1621

    Article  Google Scholar 

  47. Surovyatkina E, Egorchenkov R, Ivanov G (2007) Multistability as intrinsic property of a single cardiac cell: a simulation study. Conf Proc IEEE Eng Med Biol Soc 927–930

    Google Scholar 

  48. Surovyatkina E, Noble D, Gavaghan D, Sher A (2010) Multistability Phenomenon in Ionic Models of Mammalian and Human Cardiac Ventricular Cells. Progr Biophys Mol Biol 103:131–141

    Article  CAS  Google Scholar 

  49. Ten Tusscher KHWJ, Noble D, Noble PJ, Panfilov AV (2004) A model for human ventricular tissue. Am J Physiol Heart Circ Physiol 286:1573–1589

    Article  Google Scholar 

  50. Ten Tusscher KHWJ, Panfilov AV (2006) Alternans and spiral breakup in a human ventricular tissue model. Am J Physiol Heart Circ Physiol 291:1088–1100

    Article  Google Scholar 

  51. Wu R, Parwardhan A (2004) Asymmetry in dynamics of action potential duration transition between steady states: a simulation study. Conf Proc IEEE Eng Med Biol Soc 6:3979–3982

    PubMed  Google Scholar 

  52. Yehia AR, Jeandupeux D, Alonso F, Guevara MR (1999) Hysteresis and Bistability in the Direct Transition from 1:1 to 2:2 Rhythm in Periodically Driven Single Ventricular Cells. Chaos 9:916–931

    Article  PubMed  Google Scholar 

  53. Yue AM, Franz MR, Roberts PR, Morgan JM (2005) Global endocardial electrical restitution in human right and left ventricles determined by noncontact mapping. J Am Coll Cardiol 46:1067–1075

    Article  PubMed  Google Scholar 

  54. Zemlin Ch, Storch E, Herzel H (2002) Alternans and 2:1 rhythms in an ionic model of heart cells. BioSystems 66:1–10

    Article  PubMed  CAS  Google Scholar 

  55. Zipes DP, Jalife J, Zorab R (2009) Cardiac Electrophysiology: From Cell to Bedside. Elseivier Saunders, Philadelphia

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Surovyatkina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Surovyatkina, E. (2011). Bifurcations and Multistability in Periodically Stimulated Cardiac Cells. In: Mosekilde, E., Sosnovtseva, O., Rostami-Hodjegan, A. (eds) Biosimulation in Biomedical Research, Health Care and Drug Development. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0418-7_12

Download citation

Publish with us

Policies and ethics