Skip to main content

New concepts and tools in imaging for the study of neurodegenerative disease

  • Conference paper
Advances in Research on Neurodegeneration

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURAL SUPPL,volume 65))

Summary

Existing technologies permit the detection of changes in neurotransmitter and/or neuroreceptor expression. This may be useful for diagnosis, for monitoring disease progression, and for assessing the pathogenesis of complications associated with long-term treatment. Although the binding of [11C]raclopride to D2 receptors is subject to competition from endogenous dopamine, this can be exploited to estimate changes in synaptic levels of dopamine. Assessment of processes downstream to the receptor will require the development of new approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antonini A, Leenders KL, Vontobel P et al (1997a) Complementary PET studies of striatal neuronal function in the differential diagnosis between multiple system atrophy and Parkinson’s disease. Brain 120: 2187–2195

    Article  PubMed  Google Scholar 

  • Antonini A, Schwarz J, Oertel WH, Pogarell O, Leenders KL (1997b) Long-term changes of striatal dopamine D2 receptors in patients with Parkinson’s disease: a study with positron emission tomography and [nC]raclopride. Mov Disord 12: 33–38

    Article  PubMed  CAS  Google Scholar 

  • Banati RB, Cagnin A, Myers R et al (1999) In vivo detection of activated microglia by [11C]PK11195-PET indicates involvement of the globus pallidum in idiopathic Parkinson’s disease. Parkinsonism Rel Disord 5: S56–S57

    Google Scholar 

  • Bhaumik S, Gambhir SS (2002) Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc Natl Acad Sci USA 99: 377–382

    Article  PubMed  CAS  Google Scholar 

  • Breier A, Su T-P, Saunders R et al (1997) Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci USA 94: 2569–2574

    Article  PubMed  CAS  Google Scholar 

  • Brooks DJ, Ibanez V, Sawle GV et al (1990a) Differing patterns of striatal 18F-dopa uptake in Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Ann Neurol 28: 547–555

    Article  PubMed  CAS  Google Scholar 

  • Brooks DJ, Salmon EP, Mathias CJ et al (1990a) The relationship between locomotor disability, autonomic dysfunction, and the integrity of the striatal dopaminergic system in patients with multiple system atrophy, pure autonomic failure, and Parkinson’s disease, studied with PET. Brain 113: 1539–1552

    Article  PubMed  Google Scholar 

  • Brooks DJ, Ibanez V, Sawle GV et al (1992) Striatal D2 receptor status in patients with Parkinson’s disease, striatonigral degeneration, and progressive supranuclear palsy, measured with nC-raclopride and positron emission tomography. Ann Neurol 31: 184–192

    Article  PubMed  CAS  Google Scholar 

  • Broussolle E, Lucking CH, Ginovart N, Pollak P, Remy P, Durr A (2000) [18F]-dopa PET study in patients with juvenile-onset PD and parkin gene mutations. Neurology 55: 877–879

    Article  PubMed  CAS  Google Scholar 

  • Burn DJ, Sawle G, Brooks DJ (1994) Differential diagnosis of Parkinson’s disease, multiple system atrophy, and Steele-Richardson-Olszewski syndrome: discriminant analysis of striatal 18F-dopa PET data. J Neurol Neurosurg Psychiatry 57: 278–284

    Article  PubMed  CAS  Google Scholar 

  • Calne DB (1994) Is idiopathic parkinsonism the consequence of an event or a process? Neurology 44: 4–10

    Google Scholar 

  • de la Fuente-Fernandez R, Lim AS, Sossi V et al (2001a) Apomorphine-induced changes in synaptic dopamine levels: PET evidence for pre-synaptic inhibition. J Cereb Blood Flow Metab 21: 1151–1159

    Article  Google Scholar 

  • de la Fuente-Fernandez R, Lu JQ, Sossi V et al (2001b) Biochemical variations in the synaptic level of dopamine precede motor fluctuations in Parkinson’s disease: PET evidence of increased dopamine turnover. Ann Neurol 49: 298–303

    Article  PubMed  Google Scholar 

  • de la Fuente-Fernandez R, Ruth TJ, Sossi V, Schulzer M, Calne DB, Stoessl AJ (2001c) Expectation and dopamine release: mechanism of the placebo effect in parkinson’s disease. Science 293: 1164–1166

    Article  PubMed  Google Scholar 

  • de la Fuente-Fernandez R, Phillips AG, Zamburlini M, Sossi V, Calne DB, Ruth TJ, Stoessl AJ (2002) Dopamine release in human ventral striatum and expectation of reward. Behav Brain Res 136: 359–363

    Article  PubMed  Google Scholar 

  • Eidelberg D, Moeller JR, Ishikawa T et al (1995) Early differential diagnosis of Parkinson’s disease with 18F-fluorodeoxyglucose and positron emission tomography. Neurology 45: 1995–2004

    Article  PubMed  CAS  Google Scholar 

  • Feigin A, Fukuda M, Dhawan V et al (2001) Metabolic correlates of levodopa response in Parkinson’s disease. Neurology 57: 2083–2088

    Article  PubMed  CAS  Google Scholar 

  • Fernandez HH, Friedman JH, Fischman AJ, Noto RB, Lannon MC (2001) Is altropane SPECT more sensitive to fluoroDOPA PET for detecting early Parkinson’s disease? Med Sci Monit 7: 1339–1343

    PubMed  CAS  Google Scholar 

  • Firnau G, Sood S, Chirakal R, Nahmias C, Garnett ES (1987) Cerebral metabolism of 6-[18F]fluoro-L-3,4-dihydroxyphenylalanine in the primate. J Neurochem 48: 1077–1082

    Article  PubMed  CAS  Google Scholar 

  • Freeman TB, Olanow CW, Hauser RA et al (1995) Bilateral fetal nigral transplantation into the postcommissural putamen in Parkinson’s disease. Ann Neurol 38: 379–388

    Article  PubMed  CAS  Google Scholar 

  • Frey KA, Koeppe RA, Kilbourn MR et al (1996) Presynaptic monoaminergic vesicles in Parkinson’s disease and normal aging. Ann Neurol 40: 873–884

    Article  PubMed  CAS  Google Scholar 

  • Frost JJ, Rosier AJ, Reich SG et al (1993) Positron emission tomographic imaging of the dopamine transporter with nC-WIN 35,428 reveals marked declines in mild Parkinson’s disease. Ann Neurol 34: 423–431

    Article  PubMed  CAS  Google Scholar 

  • Fukuda M, Mentis M, Ghilardi MF et al (2001) Functional correlates of pallidal stimulation for Parkinson’s disease. Ann Neurol 49: 155–164

    Article  PubMed  CAS  Google Scholar 

  • Gambhir SS, Bauer E, Black ME et al (2000) A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc Natl Acad Sci USA 97: 2785–2790

    Article  PubMed  CAS  Google Scholar 

  • Garnett ES, Firnau G, Nahmias C (1983a) Dopamine visualized in the basal ganglia of living man. Nature 305: 137–138

    Article  PubMed  CAS  Google Scholar 

  • Garnett S, Firnau G, Nahmias C, Chirakal R (1983b) Striatal dopamine metabolism in living monkeys examined by positron emission tomography. Brain Res 280: 169–171

    Article  PubMed  CAS  Google Scholar 

  • Guttman M, Seeman P, Reynolds GP, Riederer P, Jellinger K, Tourtellotte WW (1986) Dopamine D2 receptor density remains constant in treated Parkinson’s disease. Ann Neurol 19: 487–492

    Article  PubMed  CAS  Google Scholar 

  • Guttman M, Burkholder J, Kish SJ et al (1997) [nC]RTI-32 PET studies of the dopamine transporter in early dopa-nai’ve Parkinson’s disease: implications for the symptomatic threshold. Neurology 48: 1578–1583

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa T, Dhawan V, Kazumata K et al (1996) Comparative nigrostriatal dopaminergic imaging with iodine-123-beta CIT-FP/SPECT and fluorine-18-FDOPA/PET. J Nucl Med 37: 1760–1765

    PubMed  CAS  Google Scholar 

  • Iyer M, Barrio JR, Namavari M et al (2001) 8-[18F]Fluoropenciclovir: an improved reporter probe for imaging HSVl-tk reporter gene expression in vivo using PET. J Nucl Med 42: 96–105

    PubMed  CAS  Google Scholar 

  • Jenkins IH, Fernandez W, Playford ED et al (1992) Impaired activation of the supplementary motor area in Parkinson’s disease is reversed when akinesia is treated with apomorphine. Ann Neurol 32: 749–757

    Article  PubMed  CAS  Google Scholar 

  • Kapur S, Zipursky RB, Remington G (1999) Clinical and theoretical implications of 5-HT2 and D2 receptor occupancy of clozapine, risperidone, and olanzapine in schizophrenia. Am J Psychiatry 156: 286–293

    PubMed  CAS  Google Scholar 

  • Kishore A, de la Fuente-Fernandez R, Snow BJ, Schulzer M, Mak E, Huser J, Stoessl AJ, Calne DB (1997) Levodopa-induced dyskinesias in idiopathic parkinsonism (IP): a simultaneous PET study of dopamine D1 and D2 receptors. Neurology 48[Suppl 2]: A327

    Google Scholar 

  • Koepp MJ, Gunn RN, Lawrence AD et al (1998) Evidence for striatal dopamine release during a video game. Nature 393: 266–268

    Article  PubMed  CAS  Google Scholar 

  • Kordower JH, Freeman TB, Snow BJ et al (1995) Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson’s disease. N Engl J Med 332: 1118–1124

    Article  PubMed  CAS  Google Scholar 

  • Lee CS, Schulzer M, Mak EK et al (1994) Clinical observations on the rate of progression of idiopathic parkinsonism. Brain 117: 501–507

    Article  PubMed  Google Scholar 

  • Lee CS, Samii A, Sossi V et al (2000) In vivo PET evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson’s disease. Ann Neurol 47: 493–503

    Article  PubMed  CAS  Google Scholar 

  • Lee CS, Schulzer M, Sossi V, Ruth TJ, McKenzie J, de la Fuente-Fernandez R, Holden JE, Calne DB, Stoessl AJ (2001) Duration-dependent striatal dopamine terminal loss in Parkinson disease levels off at different degrees of severity on the two sides; nC-DTBZ PET evidence for the “event” hypothesis. Neurology 56[Suppl 3]: A73–A74

    Google Scholar 

  • Marek KL, Seibyl JP, Zoghbi SS et al (1996) [123I]beta-CIT/SPECT imaging demonstrates bilateral loss of dopamine transporters in hemi-Parkinson’s disease. Neurology 46: 231–237

    Article  PubMed  CAS  Google Scholar 

  • Marek K, Seibyl J, Shoulson I et al (2002) Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson disease progression. JAMA 287: 1653–1661

    Article  CAS  Google Scholar 

  • McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38: 1285–1291

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Dhawan V, Chaly T et al (2001) Blinded positron emission tomography study of dopamine cell implantation for Parkinson’s disease. Ann Neurol 50:181–187

    Article  PubMed  CAS  Google Scholar 

  • Pal PK, Leung J, Hedrich K, Samii A, Lieberman A, Nausieda PA, Calne DB, Breakefield XO, Klein C, Stoessl AJ (2002) [18F]-Dopa PET imaging in early stage, non-parkin juvenile Parkinsonism. Mov Disord 17: 789–794

    Article  PubMed  Google Scholar 

  • Pate BD, Kawamata T, Yamada T et al (1993) Correlation of striatal fluorodopa uptake in the MPTP monkey with dopaminergic indices. Ann Neurol 34: 331–338

    Article  PubMed  CAS  Google Scholar 

  • Piccini P, Brooks DJ, Bjorklund A et al (1999) Dopamine release from nigral transplants visualized in vivo in a Parkinson’s patient. Nat Neurosci 2: 1137–1140

    Article  PubMed  CAS  Google Scholar 

  • Playford ED, Jenkins IH, Passingham RE, Nutt J, Frackowiak RS, Brooks DJ (1992) Impaired mesial frontal and putamen activation in Parkinson’s disease: a positron emission tomography study. Ann Neurol 32: 151–161

    Article  PubMed  CAS  Google Scholar 

  • Rinne JO, Bergman J, Ruottinen H et al (1999) Striatal uptake of a novel PET ligand, [18F]beta-CFT, is reduced in early Parkinson’s disease. Synapse 31: 119–124

    Article  PubMed  CAS  Google Scholar 

  • Samii A, Markopoulou K, Wszolek ZK et al (1999) PET studies of parkinsonism associated with mutation in the a-synuclein gene. Neurology 53: 2097–2102

    Article  PubMed  CAS  Google Scholar 

  • Samuel M, Ceballos-Baumann AO, Turjanski N et al (1997) Pallidotomy in Parkinson’s disease increases supplementary motor area and prefrontal activation during performance of volitional movements: an H2 150 PET study. Brain 120: 1301–1313

    Article  PubMed  Google Scholar 

  • Seeman P, Guan HC, Niznik HB (1989) Endogenous dopamine lowers the dopamine D2 receptor density as measured by 3H raclopride: implications for positron emission tomography of the human brain. Synapse 3: 96–97

    Article  PubMed  CAS  Google Scholar 

  • Shi N, Boado RJ, Pardride WM (2000) Antisense imaging of gene expression in the brain in vivo. Proc Natl Acad Sci USA 97: 14709–14714

    Article  PubMed  CAS  Google Scholar 

  • Shinotoh H, Inoue O, Hirayama K et al (1993) Dopamine D1 receptors in Parkinson’s disease and striatonigral degeneration: a positron emission tomography study. J Neurol Neurosurg Psychiatry 56: 467–472

    Article  PubMed  CAS  Google Scholar 

  • Shoghi-Jadid K, Small GW, Agdeppa ED et al (2002) Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease. Am J Geriatr Psychiatry 10: 24–35

    PubMed  Google Scholar 

  • Snow BJ, Tooyama I, McGeer EG et al (1993) Human positron emission tomographic [18F]fluorodopa studies correlate with dopamine cell counts and levels. Ann Neurol 34: 324–330

    Article  PubMed  CAS  Google Scholar 

  • Strafella AP, Paus T, Barrett J, Dagher A (2001) Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J Neurosci 21: RC157

    PubMed  CAS  Google Scholar 

  • Tavitian B, Terrazzino S, Kuhnast B et al (1998) In vivo imaging of oligonucleotide with positron emission tomography. Nat Med 4: 467–471

    Article  PubMed  CAS  Google Scholar 

  • Tedroff J, Pedersen M, Aquilonius S-M, Hartvig P, Jacobsson G, Langstrom B (1996) Levodopa-induced changes in synaptic dopamine in patients with Parkinson’s disease as measured by [11C]raclopride displacement and PET. Neurology 46: 1430–1436

    Article  PubMed  CAS  Google Scholar 

  • Turjanski N, Lees AJ, Brooks DJ (1997) In vivo studies on striatal dopamine D1 and D2 site binding in L-dopa-treated Parkinson’s disease patients with and without dyskinesias. Neurology 49: 717–723

    Article  PubMed  CAS  Google Scholar 

  • Vanderborght T, Kilbourn M, Desmond T, Kuhl D, Frey K (1995) The vesicular monoamine transporter is not regulated by dopaminergic drug treatments. Eur J Pharmacol 294: 577–583

    Article  CAS  Google Scholar 

  • Volkow ND, Wang G-J, Fowler JS et al (1994) Imaging endogenous dopamine competition with [11C]raclopride in the human brain. Synapse 16: 255–262

    Article  PubMed  CAS  Google Scholar 

  • Wenning G, Odin P, Morrish P et al (1997) Short-and long-term survival and function of unilateral intrastriatal dopaminergic grafts in Parkinson’s disease. Ann Neurol 42: 95–107

    Article  PubMed  CAS  Google Scholar 

  • Whone AL, Remy P, Davis MR, Sabolek M, Nahmias C, Stoessl AJ, Watts RL, Brooks DJ (2002) The REAL-PET study: slower progression in early Parkinson’s disease treated with ropinirole compared with L-dopa. Neurology 58[Suppl 3]: A82–83

    Google Scholar 

  • Wilson JM, Kish SJ (1996) The vesicular monoamine transporter, in contrast to the dopamine transporter, is not altered by chronic cocaine self-administration in the rat. J Neurosci 16: 3507–3510

    PubMed  CAS  Google Scholar 

  • Yee RE, Irwin I, Milonas C, Stout DB, Huang SC, Shoghi-Jadid K, Satyamurthy N, Delanney LE, Togasaki DM, Farahani KE, Delfani K, Janson AM, Phelps ME, Langston JW, Barrio JR (2001) Novel observations with FDOPA-PET imaging after early nigrostriatal damage. Mov Disord 16: 838–848

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this paper

Cite this paper

Stoessl, A.J., Lee, C.S., de la Fuente-Fernandez, R. (2003). New concepts and tools in imaging for the study of neurodegenerative disease. In: Horowski, R., et al. Advances in Research on Neurodegeneration. Journal of Neural Transmission. Supplementa, vol 65. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0643-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0643-3_9

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83907-2

  • Online ISBN: 978-3-7091-0643-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics