Skip to main content

The Neuroprotective Effects of Cyclooxygenase-2 Inhibition in a Mouse Model of Aneurysmal Subarachnoid Hemorrhage

  • Chapter
  • First Online:
Intracerebral Hemorrhage Research

Part of the book series: Acta Neurochirurgica Supplementum ((NEUROCHIRURGICA,volume 111))

Abstract

The CNS inflammatory reaction occurring after aneurysmal subarachnoid hemorrhage (SAH) involves the upregulation of numerous cytokines and prostaglandins. Cyclooxygenase (COX) inhibition is a well-established pharmacological anti-inflammatory agent. Previous studies have shown marked increases in COX-2 expression in neurons, astrocytes, microglia, and endothelial cells following brain injury. COX-2 inhibition has been shown to be beneficial following various types of brain injury. This experiment investigates the role of COX-2 activity in early brain injury following SAH. CD-1 mice were subjected to an endovascular perforation model of SAH or SHAM surgery. Following experimental SAH animals were treated with the specific COX-2 inhibitor, NS398, in dosages of either 10 or 30 mg/kg. Neurological performance and brain edema were evaluated 24 and 72 h after SAH. NS398 at 30 mg/kg significantly reduced SAH-induced neurological deterioration. NS 398 at 30 mg/kg resulted in a trend toward the reduction of SAH-induced cerebral edema. Treatment had no effect on mortality. This experiment provides preliminary evidence that COX-2 inhibition is an effective pharmacological intervention for the prevention of brain edema and the preservation of neurological function following SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cederberg D, Siesjo P (2010) What has inflammation to do with traumatic brain injury? Childs Nerv Syst 26(2):221–226

    Article  PubMed  Google Scholar 

  2. Dong Y, Benveniste EN (2001) Immune function of astrocytes. Glia 36(2):180–190

    Article  PubMed  CAS  Google Scholar 

  3. Giulian D, Baker TJ, Shih LC, Lachman LB (1986) Interleukin 1 of the central nervous system is produced by ameboid microglia. J Exp Med 164(2):594–604

    Article  PubMed  CAS  Google Scholar 

  4. Norton WT, Aquino DA, Hozumi I, Chiu FC, Brosnan CF (1992) Quantitative aspects of reactive gliosis: a review. Neurochem Res 17(9):877–885

    Article  PubMed  CAS  Google Scholar 

  5. Sawada M, Kondo N, Suzumura A, Marunouchi T (1989) Production of tumor necrosis factor-alpha by microglia and astrocytes in culture. Brain Res 491(2):394–397

    Article  PubMed  CAS  Google Scholar 

  6. Iadecola C, Sugimoto K, Niwa K, Kazama K, Ross ME (2001) Increased susceptibility to ischemic brain injury in cyclooxygenase-1-deficient mice. J Cereb Blood Flow Metab 21(12):1436–1441

    Article  PubMed  CAS  Google Scholar 

  7. Liuzzi FJ, Lasek RJ (1987) Astrocytes block axonal regeneration in mammals by activating the physiological stop pathway. Science 237(4815):642–645

    Article  PubMed  CAS  Google Scholar 

  8. Reier PJ, Houle JD (1988) The glial scar: its bearing on axonal elongation and transplantation approaches to CNS repair. Adv Neurol 47:87–138

    PubMed  CAS  Google Scholar 

  9. Eddleston M, Mucke L (1993) Molecular profile of reactive astrocytes – implications for their role in neurologic disease. Neuroscience 54(1):15–36

    Article  PubMed  CAS  Google Scholar 

  10. Minghetti L, Levi G (1998) Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide. Prog Neurobiol 54(1):99–125

    Article  PubMed  CAS  Google Scholar 

  11. Candelario-Jalil E, Gonzalez-Falcon A, Garcia-Cabrera M, Leon OS, Fiebich BL (2007) Post-ischaemic treatment with the cyclooxygenase-2 inhibitor nimesulide reduces blood-brain barrier disruption and leukocyte infiltration following transient focal cerebral ischaemia in rats. J Neurochem 100(4):1108–1120

    Article  PubMed  CAS  Google Scholar 

  12. Kawano T, Anrather J, Zhou P et al (2006) Prostaglandin E2 EP1 receptors: downstream effectors of COX-2 neurotoxicity. Nat Med 12(2):225–229

    Article  PubMed  CAS  Google Scholar 

  13. Kunz A, Anrather J, Zhou P, Orio M, Iadecola C (2007) Cyclooxygenase-2 does not contribute to postischemic production of reactive oxygen species. J Cereb Blood Flow Metab 27(3):545–551

    Article  PubMed  CAS  Google Scholar 

  14. Kunz T, Marklund N, Hillered L, Oliw EH (2002) Cyclooxygenase-2, prostaglandin synthases, and prostaglandin H2 metabolism in traumatic brain injury in the rat. J Neurotrauma 19(9):1051–1064

    Article  PubMed  Google Scholar 

  15. Nagayama M, Niwa K, Nagayama T, Ross ME, Iadecola C (1999) The cyclooxygenase-2 inhibitor NS-398 ameliorates ischemic brain injury in wild-type mice but not in mice with deletion of the inducible nitric oxide synthase gene. J Cereb Blood Flow Metab 19(11):1213–1219

    Article  PubMed  CAS  Google Scholar 

  16. Nogawa S, Zhang F, Ross ME, Iadecola C (1997) Cyclo-oxygenase-2 gene expression in neurons contributes to ischemic brain damage. J Neurosci 17(8):2746–2755

    PubMed  CAS  Google Scholar 

  17. Scali C, Giovannini MG, Prosperi C, Bellucci A, Pepeu G, Casamenti F (2003) The selective cyclooxygenase-2 inhibitor rofecoxib suppresses brain inflammation and protects cholinergic neurons from excitotoxic degeneration in vivo. Neuroscience 17(4):909–919

    Article  PubMed  CAS  Google Scholar 

  18. Sugimoto K, Iadecola C (2003) Delayed effect of administration of COX-2 inhibitor in mice with acute cerebral ischemia. Brain Res 960(1–2):273–276

    Article  PubMed  CAS  Google Scholar 

  19. Nakayama M, Uchimura K, Zhu RL et al (1998) Cyclooxygenase-2 inhibition prevents delayed death of CA1 hippocampal neurons following global ischemia. Proc Natl Acad Sci USA 95(18):10954–10959

    Article  PubMed  CAS  Google Scholar 

  20. Iadecola C, Alexander M (2001) Cerebral ischemia and inflammation. Curr Opin Neurol 14(1):89–94

    Article  PubMed  CAS  Google Scholar 

  21. Ayer RE, Zhang JH (2008) The clinical significance of acute brain injury in subarachnoid hemorrhage and opportunity for intervention. Acta Neurochir Suppl 105:179–184

    Article  PubMed  CAS  Google Scholar 

  22. Osuka K, Suzuki Y, Watanabe Y, Takayasu M, Yoshida J (1998) Inducible cyclooxygenase expression in canine basilar artery after experimental subarachnoid hemorrhage. Stroke 29(6):1219–1222

    PubMed  CAS  Google Scholar 

  23. Osuka K, Watanabe Y, Yamauchi K et al (2006) Activation of the JAK-STAT signaling pathway in the rat basilar artery after subarachnoid hemorrhage. Brain Res 1072(1):1–7

    Article  PubMed  CAS  Google Scholar 

  24. Tran Dinh YR, Jomaa A, Callebert J et al (2001) Overexpression of cyclooxygenase-2 in rabbit basilar artery endothelial cells after subarachnoid hemorrhage. Neurosurgery 48(3):626–633

    Article  PubMed  CAS  Google Scholar 

  25. Schwartz AY, Masago A, Sehba FA, Bederson JB (2000) Experimental models of subarachnoid hemorrhage in the rat: a refinement of the endovascular filament model. J Neurosci Methods 96(2):161–167

    Article  PubMed  CAS  Google Scholar 

  26. Sozen T, Tsuchiyama R, Hasegawa Y et al (2009) Role of interleukin-1beta in early brain injury after subarachnoid hemorrhage in mice. Stroke 40(7):2519–2525

    Article  PubMed  CAS  Google Scholar 

  27. Bravo TP, Matchett GA, Jadhav V et al (2008) Role of histamine in brain protection in surgical brain injury in mice. Brain Res 1205:100–107

    Article  PubMed  CAS  Google Scholar 

  28. Garcia JH, Wagner S, Liu KF, Hu XJ (1995) Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke 26(4):627–634

    PubMed  CAS  Google Scholar 

  29. Colombel C, Lalonde R, Caston J (2002) The effects of unilateral removal of the cerebellar hemispheres on motor functions and weight gain in rats. Brain Res 950(1–2):231–238

    Article  PubMed  CAS  Google Scholar 

  30. Manaenko A, Lekic T, Sozen T, Tsuchiyama R, Zhang JH, Tang J (2009) Effect of gap junction inhibition on intracerebral hemorrhage-induced brain injury in mice. Neurol Res 31(2):173–178

    Article  PubMed  CAS  Google Scholar 

  31. Kubota T, Handa Y, Tsuchida A, Kaneko M, Kobayashi H, Kubota T (1993) The kinetics of lymphocyte subsets and macrophages in subarachnoid space after subarachnoid hemorrhage in rats. Stroke 24(12):1993–2000

    PubMed  CAS  Google Scholar 

  32. Candelario-Jalil E, Taheri S, Yang Y et al (2007) Cyclooxygenase inhibition limits blood-brain barrier disruption following intracerebral injection of tumor necrosis factor-alpha in the rat. J Pharmacol Exp Ther 323(2):488–498

    Article  PubMed  CAS  Google Scholar 

  33. Dreier JP, Woitzik J, Fabricius M et al (2006) Delayed ischaemic neurological deficits after subarachnoid haemorrhage are associated with clusters of spreading depolarizations. Brain 129(Pt 12):3224–3237

    Article  PubMed  Google Scholar 

  34. Koistinaho J, Chan PH (2000) Spreading depression-induced cyclooxygenase-2 expression in the cortex. Neurochem Res 25(5):645–651

    Article  PubMed  CAS  Google Scholar 

  35. Gobbo OL, O’Mara SM (2004) Post-treatment, but not pre-treatment, with the selective cyclooxygenase-2 inhibitor celecoxib markedly enhances functional recovery from kainic acid-induced neurodegeneration. Neuroscience 125(2):317–327

    Article  PubMed  CAS  Google Scholar 

  36. Fathali N, Ostrowski RP, Lekic T et al (2010) Cyclooxygenase-2 inhibition provides lasting protection against neonatal hypoxic-ischemic brain injury. Crit Care Med 38(2):572–578

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was partially supported by grants from NIH to JHZ.

Conflict of interest statement We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Ayer, R., Jadhav, V., Sugawara, T., Zhang, J.H. (2011). The Neuroprotective Effects of Cyclooxygenase-2 Inhibition in a Mouse Model of Aneurysmal Subarachnoid Hemorrhage. In: Zhang, J., Colohan, A. (eds) Intracerebral Hemorrhage Research. Acta Neurochirurgica Supplementum, vol 111. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0693-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0693-8_24

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0692-1

  • Online ISBN: 978-3-7091-0693-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics