Skip to main content

Evolution of Lipopolysaccharide Biosynthesis Genes

  • Chapter
  • First Online:
Bacterial Lipopolysaccharides

Abstract

Lipopolysaccharide (LPS) is a highly polymorphic structure that differs within and between genera, and contains three main components: lipid A, core oligosaccharide (OS), and O-specific antigen in the order in which they occur in LPS, which correlates with increasing structural diversity for each component. In Escherichia coli, for example, there are five core OS types known and over 180 O-antigen forms (including Shigella), and in Salmonella enterica, 2 and 46 respectively. The diversity of O-antigen forms has been widely studied for some species although the forms known may be underestimates as most of the isolates typed are from humans or domestic animals and their associated environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raymond CK, Sims EH, Kas A, Spencer DH, Kutyavin TV, Ivey RG, Zhou Y, Kaul R, Clendenning JB, Olson MV (2002) Genetic variation at the O-antigen biosynthetic locus in Pseudomonas aeruginosa. J Bacteriol 184:3614–3622

    Article  CAS  Google Scholar 

  2. Bogdanovich T, Carniel E, Fukushima H, Skurnik M (2003) Use of O-antigen gene cluster-specific PCRs for the identification and O-genotyping of Yersinia pseudotuberculosis and Yersinia pestis. J Clin Microbiol 41:5103–5112

    Article  CAS  Google Scholar 

  3. Shimada T, Arakawa E, Itoh K, Okitsu T, Matsushima A, Asai Y, Yamai S, Nakazato T, Nair G, Albert MJ, Takeda Y (1994) Extended serotyping scheme for Vibrio cholerae. Curr Microbiol 28:175–178

    Article  Google Scholar 

  4. Klena JD, Parker CT, Knibb K, Ibbitt JC, Devane PM, Horn ST, Miller WG, Konkel ME (2004) Differentiation of Campylobacter coli, Campylobacter jejuni, Campylobacter lari, and Campylobacter upsaliensis by a multiplex PCR developed from the nucleotide sequence of the lipid A gene lpxA. J Clin Microbiol 42:5549–5557

    Article  CAS  Google Scholar 

  5. Dotson GD, Kaltashov IA, Cotter RJ, Raetz CR (1998) Expression cloning of a Pseudomonas gene encoding a hydroxydecanoyl-acyl carrier protein-dependent UDP-GlcNAc acyltransferase. J Bacteriol 180:330–337

    CAS  Google Scholar 

  6. Williamson JM, Anderson MS, Raetz CRH (1991) Acyl-acyl carrier protein specificity of UDP-GlcNAc acyltransferases from gram-negative bacteria: relationship to lipid A structure. J Bacteriol 173:3591–3596

    CAS  Google Scholar 

  7. Reeves PR, Hobbs M, Valvano M, Skurnik M, Whitfield C, Coplin D, Kido N, Klena J, Maskell D, Raetz C, Rick P (1996) Bacterial polysaccharide synthesis and gene nomenclature. Trends Microbiol 4:495–503

    Article  CAS  Google Scholar 

  8. Hobbs M, Reeves PR (1994) The JUMPstart sequence: a 39 bp element common to several polysaccharide gene clusters. Mol Microbiol 12:855–856

    Article  CAS  Google Scholar 

  9. Marolda CL, Valvano MA (1998) Promoter region of the Escherichia coli O7-specific lipopolysaccharide gene cluster: structural and functional characterization of an upstream untranslated mRNA sequence. J Bacteriol 180:3070–3079

    CAS  Google Scholar 

  10. Valvano MA (2003) Export of O-specific lipopolysaccharide. Front Biosci 8:S452–S471

    Article  CAS  Google Scholar 

  11. Wang Q, Torzewska A, Ruan X, Wang X, Rozalski A, Shao Z, Guo X, Zhou H, Feng L, Wang L (2010) Molecular and genetic analyses of the putative Proteus O antigen gene locus. Appl Environ Microbiol 76:5471–5478

    Article  CAS  Google Scholar 

  12. Duda KA, Duda KT, Beczala A, Kasperkiewicz K, Radziejewska-Lebrecht J, Skurnik M (2009) ECA-immunogenicity of Proteus mirabilis strains. Arch Immunol Ther Exp 57:147–151

    Article  CAS  Google Scholar 

  13. Xu DQ, Cisar JO, Ambulos N Jr, Burr DH, Kopecko DJ (2002) Molecular cloning and characterization of genes for Shigella sonnei form I O polysaccharide: proposed biosynthetic pathway and stable expression in a live Salmonella vaccine vector. Infect Immun 70:4414–4423

    Article  CAS  Google Scholar 

  14. Salerno A, Deletoile A, Lefevre M, Ciznar I, Krovacek K, Grimont P, Brisse S (2007) Recombining population structure of Plesiomonas shigelloides (Enterobacteriaceae) revealed by multilocus sequence typing. J Bacteriol 189:7808–7818

    Article  CAS  Google Scholar 

  15. Rush JS, Alaimo C, Robbiani R, Wacker M, Waechter CJ (2010) A novel epimerase that converts GlcNAc-P-P-undecaprenol to GalNAc-P-P-undecaprenol in Escherichia coli O157. J Biol Chem 285:1671–1680

    Article  CAS  Google Scholar 

  16. Hu B, Perepelov AV, Liu B, Shevelev SD, Guo D, Senchenkova SN, Shashkov AS, Feng L, Knirel YA, Wang L (2010) Structural and genetic evidence for the close relationship between Escherichia coli O71 and Salmonella enterica O28 O-antigens. FEMS Immunol Med Microbiol 59:161–169

    CAS  Google Scholar 

  17. Liu B, Perepelov AV, Li D, Senchenkova SN, Han Y, Shashkov AS, Feng L, Knirel YA, Wang L (2010) Structure of the O-antigen of Salmonella O66 and the genetic basis for similarity and differences between the closely related O-antigens of Escherichia coli O166 and Salmonella O66. Microbiology 156:1642–1649

    Article  CAS  Google Scholar 

  18. Perepelov AV, Li D, Liu B, Senchenkova SN, Guo D, Shashkov AS, Feng L, Knirel YA, Wang L (2011) Structural and genetic characterization of the closely related O-antigens of Escherichia coli O85 and Salmonella enterica O17. Innate Immun. doi:10.1177/1753425910369270

    Google Scholar 

  19. Perepelov AV, Liu B, Senchenkova SN, Shevelev SD, Feng L, Shashkov AS, Wang L, Knirel YA (2010) The O-antigen of Salmonella enterica O13 and its relation to the O-antigen of Escherichia coli O127. Carbohydr Res 345:1808–1811

    Article  CAS  Google Scholar 

  20. Perepelov AV, Liu B, Shevelev SD, Senchenkova SN, Shashkov AS, Feng L, Knirel YA, Wang L (2010) Relatedness of the O-polysaccharide structures of Escherichia coli O123 and Salmonella enterica O58, both containing 4,6-dideoxy-4-{N-[(S)-3-hydroxybutanoyl]-d-alanyl}amino-d-glucose; revision of the E. coli O123 O-polysaccharide structure. Carbohydr Res 345:825–829

    Article  CAS  Google Scholar 

  21. Wang W, Perepelov AV, Feng L, Shevelev SD, Wang Q, Senchenkova SN, Han W, Li Y, Shashkov AS, Knirel YA, Reeves PR, Wang L (2007) A group of Escherichia coli and Salmonella enterica O antigen lipopolysaccharides sharing a common backbone structure. Microbiology 153:2159–2167

    Article  CAS  Google Scholar 

  22. Samuel G, Hogbin J-P, Wang L, Reeves PR (2004) The relationship of the Escherichia coli O157, O111 and O55 O-antigen gene clusters with those of Salmonella enterica or Citrobacter freundii that express identical O antigens. J Bacteriol 186:6536–6543

    Article  CAS  Google Scholar 

  23. Reeves PR (1993) Evolution of Salmonella O antigen variation by interspecific gene transfer on a large scale. Trends Genet 9:17–22

    Article  CAS  Google Scholar 

  24. Kingsley RA, Bäumler AJ (2000) Host adaptation and the emergence of infectious disease: the Salmonella paradigm. Mol Microbiol 36:1006–1014

    Article  CAS  Google Scholar 

  25. Liu D, Verma NK, Romana LK, Reeves PR (1991) Relationships among the rfb regions of Salmonella serovars A, B, and D. J Bacteriol 173:4814–4819

    CAS  Google Scholar 

  26. Curd H, Liu D, Reeves PR (1998) Relationships among the O-antigen gene clusters of Salmonella enterica groups B, D1, D2, and D3. J Bacteriol 180:1002–1007

    CAS  Google Scholar 

  27. Xiang SH, Hobbs M, Reeves PR (1994) Molecular analysis of the rfb gene cluster of a group D2 Salmonella enterica strain: evidence for its origin from an insertion sequence-mediated recombination event between group E and D1 strains. J Bacteriol 176:4357–4365

    CAS  Google Scholar 

  28. Reeves PR, Pacinelli E, Wang L (2003) O antigen gene clusters of Yersinia pseudotuberculosis. In: Skurnik M, Bengoechea JA, Granfors K (eds) The genus Yersinia: entering the functional genomics era. Kluwer, Plenum, New York, pp 199–206

    Google Scholar 

  29. Cunneen MM, Reeves PR (2007) The Yersinia kristensenii O11 O antigen gene cluster was acquired by lateral gene transfer from an Escherichia coli-like ancestor and incorporated at a novel chromosomal locus. Mol Biol Evol 24:1355–1365

    Article  CAS  Google Scholar 

  30. De Castro C, Kenyon JJ, Cunneen MM, Reeves PR, Molinaro A, Holst O, Skurnik M (2011) Genetic characterisation and structural analysis of the O-specific polysaccharide of Yersinia pseudotuberculosis serotype O:1c. Innate Immun. doi:10.1177/1753425910364425

    Google Scholar 

  31. Pacinelli E, Wang L, Reeves PR (2002) Relationship of Yersinia pseudotuberculosis O antigens IA IIA and IVB: the IIA gene cluster was derived from that of IVB. Infect Immun 70:3271–3276

    Article  CAS  Google Scholar 

  32. Liu B, Knirel YA, Feng L, Perepelov AV, Senchenkova SN, Wang Q, Reeves PR, Wang L (2008) Structure and genetics of Shigella O antigens. FEMS Microbiol Rev 32:627–653

    Article  Google Scholar 

  33. Cheng J, Wang Q, Wang W, Wang Y, Wang L, Feng L (2006) Characterization of E. coli O24 and O56 O antigen gene clusters reveals a complex evolutionary history of the O24 gene cluster. Curr Microbiol 53:470–476

    Article  CAS  Google Scholar 

  34. Feng L, Perepelov AV, Zhao G, Shevelev SD, Wang Q, Senchenkova SN, Shashkov AS, Geng Y, Reeves PR, Knirel YA, Wang L (2007) Structural and genetic evidence that the Escherichia coli O148 O antigen is the precursor of the Shigella dysenteriae type 1 O antigen and identification of a glucosyltransferase gene. Microbiology 153:139–147

    Article  CAS  Google Scholar 

  35. King JD, Kocincova D, Westman EL, Lam JS (2009) Lipopolysaccharide biosynthesis in Pseudomonas aeruginosa. Innate Immun 15:261–312

    Article  CAS  Google Scholar 

  36. Amor K, Heinrichs DE, Frirdich E, Ziebell K, Johnson RP, Whitfield C (2000) Distribution of core oligosaccharide types in lipopolysaccharides from Escherichia coli. Infect Immun 68:1116–1124

    Article  CAS  Google Scholar 

  37. Heinrichs DE, Yethon JA, Whitfield C (1998) Molecular basis for structural diversity in the core regions of the lipopolysaccharides of Escherichia coli and Salmonella enterica. Mol Microbiol 30:221–232

    Article  CAS  Google Scholar 

  38. Keenleyside WJ, Perry MB, MacLean LL, Poppe C, Whitfield C (1994) A plasmid-encoded rfbO:54 gene cluster is required for biosynthesis of the O:54 antigen in Salmonella enterica serovar Borreze. Mol Microbiol 11:437–448

    Article  CAS  Google Scholar 

  39. Keenleyside WJ, Whitefield C (1996) A novel pathway for O-polysaccharide biosynthesis in Salmonella enterica serovar Borreze. J Biol Chem 271:28581–28592

    Article  CAS  Google Scholar 

  40. Feng L, Senchenkova SN, Yang Y, Shashkov AS, Tao J, Guo H, Cheng J, Ren Y, Knirel YA, Reeves PR, Wang L (2004) Synthesis of the heteropolysaccharide O antigen of Escherichia coli O52 requires an ABC transporter: structural and genetic evidence. J Bacteriol 186:4510–4519

    Article  CAS  Google Scholar 

  41. Perepelov AV, Li D, Liu B, Senchenkova SN, Guo D, Shevelev SD, Shashkov AS, Guo X, Feng L, Knirel YA, Wang L (2009) Structural and genetic characterization of Escherichia coli O99 antigen. FEMS Immunol Med Microbiol 57:80–87

    Article  CAS  Google Scholar 

  42. Kelly RF, Whitfield C (1996) Clonally diverse rfb gene clusters are involved in expression of a family of related d-galactan O antigens in Klebsiella species. J Bacteriol 178:5205–5214

    CAS  Google Scholar 

  43. Shu HY, Fung CP, Liu YM, Wu KM, Chen YT, Li LH, Liu TT, Kirby R, Tsai SF (2009) Genetic diversity of capsular polysaccharide biosynthesis in Klebsiella pneumoniae clinical isolates. Microbiology 155:4170–4183

    Article  CAS  Google Scholar 

  44. Whitfield C (2006) Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem 75:39–68

    Article  CAS  Google Scholar 

  45. Sugiyama T, Kido N, Kato Y, Koide N, Yoshida T, Yokochi T (1998) Generation of Escherichia coli O9a serotype, a subtype of E. coli O9, by transfer of the wb* gene cluster of Klebsiella O3 into E. coli via recombination. J Bacteriol 180:2775–2778

    CAS  Google Scholar 

  46. Rahn A, Drummelsmith J, Whitfield C (1999) Conserved organization in the cps gene clusters for expression of Escherichia coli group 1 K antigens: relationship to the colanic acid biosynthesis locus and the cps genes from Klebsiella pneumoniae. J Bacteriol 181:2307–2313

    CAS  Google Scholar 

  47. Skurnik M, Zhang L (1996) Molecular genetics and biochemistry of Yersinia lipopolysaccharide. APMIS 104:849–872

    Article  CAS  Google Scholar 

  48. Davies RL (1990) O-serotyping of Yersinia ruckeri with special emphasis on European isolates. Vet Microbiol 22:299–307

    Article  CAS  Google Scholar 

  49. Beynon LM, Richards JC, Perry MB (1994) The structure of the lipopolysaccharide O antigen from Yersinia ruckeri serotype O1. Carbohydr Res 256:303–317

    Article  CAS  Google Scholar 

  50. Abeyrathne PD, Daniels C, Poon KK, Matewish MJ, Lam JS (2005) Functional characterization of WaaL, a ligase associated with linking O-antigen polysaccharide to the core of Pseudomonas aeruginosa lipopolysaccharide. J Bacteriol 187:3002–3012

    Article  CAS  Google Scholar 

  51. Rocchetta HL, Burrows LL, Lam JS (1999) Genetics of O-antigen biosynthesis in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 63:523–553

    CAS  Google Scholar 

  52. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964

    Article  CAS  Google Scholar 

  53. Mullane N, O’Gaora P, Nally JE, Iversen C, Whyte P, Wall PG, Fanning S (2008) Molecular analysis of the Enterobacter sakazakii O-antigen gene locus. Appl Environ Microbiol 74:3783–3794

    Article  CAS  Google Scholar 

  54. Allison GE, Verma NK (2000) Serotype-converting bacteriophages and O-antigen modification in Shigella flexneri. Trends Microbiol 8:17–23

    Article  CAS  Google Scholar 

  55. Stagg RM, Tang SS, Carlin NI, Talukder KA, Cam PD, Verma NK (2009) A novel glucosyltransferase involved in O-antigen modification of Shigella flexneri serotype 1c. J Bacteriol 191:6612–6617

    Article  CAS  Google Scholar 

  56. Perepelov AV, Shevelev SD, Liu B, Senchenkova SN, Shashkov AS, Feng L, Knirel YA, Wang L (2010) Structures of the O-antigens of Escherichia coli O13, O129, and O135 related to the O-antigens of Shigella flexneri. Carbohydr Res 345:1594–1599

    Article  CAS  Google Scholar 

  57. Pupo GM, Lan R, Reeves PR (2000) Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics. Proc Natl Acad Sci USA 97:10567–10572

    Article  CAS  Google Scholar 

  58. Lindberg AA (1973) Bacteriophage receptors. Annu Rev Microbiol 27:205–241

    Article  CAS  Google Scholar 

  59. Liu D, Haase AM, Lindqvist L, Lindberg AA, Reeves PR (1993) Glycosyl transferases of O-antigen biosynthesis in Salmonella enterica: identification and characterization of transferase genes of groups B, C2, and E1. J Bacteriol 175:3408–3413

    CAS  Google Scholar 

  60. Caugant DA, Levin BR, Selander RK (1984) Distribution of multilocus genotypes of Escherichia coli within and between host families. J Hyg 92:377–384

    Article  CAS  Google Scholar 

  61. Ochman H, Whittam TS, Caugant DA, Selander RK (1983) Enzyme polymorphism and genetic population structure in Escherichia coli and Shigella. J Gen Microbiol 129:2715–2726

    CAS  Google Scholar 

  62. Ochman H, Selander RK (1984) Evidence for clonal population structure in Escherichia coli. Proc Natl Acad Sci USA 81:198–201

    Article  CAS  Google Scholar 

  63. Whittam TS, Ochman H, Selander RK (1983) Multilocus genetic structure in natural populations of Escherichia coli. Proc Natl Acad Sci USA 80:1751–1755

    Article  CAS  Google Scholar 

  64. Selander RK, Smith NH (1990) Molecular population genetics of Salmonella. Rev Med Microbiol 1:219–228

    Google Scholar 

  65. Milkman R (1997) Recombination and population structure in Escherichia coli. Genetics 146:745–750

    CAS  Google Scholar 

  66. Tenaillon O, Skurnik D, Picard B, Denamur E (2010) The population genetics of commensal Escherichia coli. Nat Rev Microbiol 8:207–217

    Article  CAS  Google Scholar 

  67. Nelson K, Selander RK (1994) Intergenic transfer and recombination of the 6-phosphogluconate dehydrogenase gene (gnd) in enteric bacteria. Proc Natl Acad Sci USA 91:10227–10231

    Article  CAS  Google Scholar 

  68. Mandel M, Higa A (1970) Calcium dependent bacteriophage DNA infection. J Mol Biol 53:159–162

    Article  CAS  Google Scholar 

  69. Milkman R, Jaeger E, McBride RD (2003) Molecular evolution of the Escherichia coli chromosome. Genetics 163:475–483

    CAS  Google Scholar 

  70. Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, Bidet P, Bingen E, Bonacorsi S, Bouchier C, Bouvet O, Calteau A, Chiapello H, Clermont O, Cruveiller S, Danchin A, Diard M, Dossat C, Karoui ME, Frapy E, Garry L, Ghigo JM, Gilles AM, Johnson J, Le Bouguenec C, Lescat M, Mangenot S, Martinez-Jehanne V, Matic I, Nassif X, Oztas S, Petit MA, Pichon C, Rouy Z, Ruf CS, Schneider D, Tourret J, Vacherie B, Vallenet D, Medigue C, Rocha EP, Denamur E (2009) Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 5:e1000344

    Article  Google Scholar 

  71. McQuiston JR, Herrera-Leon S, Wertheim BC, Doyle J, Fields PI, Tauxe RV, Logsdon JM Jr (2008) Molecular phylogeny of the Salmonellae: relationships among Salmonella species and subspecies determined from four housekeeping genes and evidence of lateral gene transfer events. J Bacteriol 190:7060–7067

    Article  CAS  Google Scholar 

  72. Thampapillai G, Lan R, Reeves PR (1994) Molecular evolution in the gnd locus of Salmonella enterica. Mol Biol Evol 11:813–828

    CAS  Google Scholar 

  73. Li Q, Reeves PR (2000) Genetic variation of dTDP-l-rhamnose pathway genes in Salmonella enterica. Microbiology 146:2291–2307

    CAS  Google Scholar 

  74. Li Q, Hobbs M, Reeves PR (2003) The variation of dTDP-l-rhamnose pathway genes in Vibrio cholerae. Microbiology 149:2463–2474

    Article  CAS  Google Scholar 

  75. Whittam TS, Wolfe ML, Wachsmuth IK, Ørskov F, Ørskov I, Wilson RA (1993) Clonal relationships among Escherichia coli strains that cause hemorrhagic colitis and infantile diarrhea. Infect Immun 61:1619–1629

    CAS  Google Scholar 

  76. Hall RH, Khambaty FM, Kothary MH, Keasler SP, Tall BD (1994) Vibrio cholerae non-O1 serogroup associated with cholera gravis genetically and physiologically resembles O1 E1 Tor cholera strains. Infect Immun 62:3859–3863

    CAS  Google Scholar 

  77. Zhou Z, Li X, Liu B, Beutin L, Xu J, Ren Y, Feng L, Lan R, Reeves PR, Wang L (2010) Derivation of Escherichia coli O157:H7 from its O55:H7 Precursor. PLoS ONE 5:e8700

    Article  Google Scholar 

  78. Albert MJ (1996) Epidemiology and molecular biology of Vibrio cholerae O139 Bengal. Indian J Med Res 104:14–27

    CAS  Google Scholar 

  79. Sueoka N (1992) Directional mutation pressure, selective constraints, and genetic equilibria. J Mol Evol 34:95–114

    Article  CAS  Google Scholar 

  80. Sueoka N (1988) Directional mutation pressure and neutral molecular evolution. Proc Natl Acad Sci USA 85:2653–2657

    Article  CAS  Google Scholar 

  81. Reeves PR, Wang L (2002) Genomic organization of LPS-specific loci. Curr Top Microbiol Immunol 264:109–135

    Article  CAS  Google Scholar 

  82. Daniels C, Vindurampulle C, Morona R (1998) Overexpression and topology of the Shigella flexneri O-antigen polymerase (Rfc/Wzy). Mol Microbiol 28:1211–1222

    Article  CAS  Google Scholar 

  83. Kogan G, Haraguchi G, Hull SI, Hull RA, Shashkov AS, Jann B, Jann K (1993) Structural analysis of O4-reactive polysaccharides from recombinant Escherichia coli: changes in the O-specific polysaccharide induced by cloning of the rfb genes. Eur J Biochem 214:259–265

    Article  CAS  Google Scholar 

  84. Stevenson G, Neal B, Liu D, Hobbs M, Packer NH, Batley M, Redmond JW, Lindquist L, Reeves PR (1994) Structure of the O-antigen of E. coli K-12 and the sequence of its rfb gene cluster. J Bacteriol 176:4144–4156

    CAS  Google Scholar 

  85. D’Souza JM, Samuel G, Reeves PR (2005) Evolutionary origins and sequence of the Escherichia coli O4 O-antigen gene cluster. FEMS Microbiol Lett 244:27–32

    Article  Google Scholar 

  86. Wang L, Huskic S, Cisterne A, Rothemund D, Reeves PR (2002) The O antigen gene cluster of Escherichia coli O55:H7 and identification of a new UDP-GlcNAc C4 epimerase gene. J Bacteriol 184:2620–2625

    Article  CAS  Google Scholar 

  87. Stevenson G, Diekelmann M, Reeves PR (2008) Determination of glycosyltransferase specificities for the Escherichia coli O111 O antigen by a generic approach. Appl Environ Microbiol 74:1294–1298

    Article  CAS  Google Scholar 

  88. Haraguchi GE, Zähringer U, Jann B, Jann K, Hull RA, Hull SI (1991) Genetic characterisation of the O4 polysaccharide gene cluster from Escherichia coli. Microb Pathogen 10:351–361

    Article  CAS  Google Scholar 

  89. Skurnik M, Peippo A, Ervelä E (2000) Characterization of the O-antigen gene clusters of Yersinia pseudotuberculosis and the cryptic O-antigen gene cluster of Yersinia pestis shows that the plague bacillus is most closely related to and has evolved from Y. pseudotuberculosis serotype O:1b. Mol Microbiol 37:316–330

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter R. Reeves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Cunneen, M.M., Reeves, P.R. (2011). Evolution of Lipopolysaccharide Biosynthesis Genes. In: Knirel, Y., Valvano, M. (eds) Bacterial Lipopolysaccharides. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0733-1_11

Download citation

Publish with us

Policies and ethics