Skip to main content

Brain changes in iron loading disorders

  • Chapter
  • First Online:
Metal Ions in Neurological Systems

Abstract

Abnormal iron accumulation within the brain is associated with various neurodegenerative diseases; however, there is debate about whether milder disorders of systemic iron loading, such as haemochromatosis, affect the brain. Arguments on both sides of the debate are often based on some common assumptions that have not been rigorously tested by appropriate experimentation. Recent research from our lab has applied high-throughput molecular techniques such as microarray to models of dietary and genetic iron loading to identify subtle but important effects on molecular systems in the brain that may go undetected by other methods commonly used in the field. In this chapter, we review the existing research in animal models and human patients and discuss the strengths and limitations of the different approaches commonly used. Using our findings as an example, we argue that transcriptomic methods can provide unique insights into how systemic iron loading can affect the brain and suggest some basic guidelines for extracting the most robust and reliable information from microarray studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnstone D, Milward EA (2010) Molecular genetic approaches to understanding the roles and regulation of iron in brain health and disease. J Neurochem 113:1387–1402

    PubMed  CAS  Google Scholar 

  2. Jazwinska EC, Cullen LM, Busfield F, Pyper WR, Webb SI, Powell LW et al (1996) Haemochromatosis and HLA-H. Nat Genet 14:249–251

    Article  PubMed  CAS  Google Scholar 

  3. Brissot P, Moirand R, Jouanolle AM, Guyader D, Le Gall JY, Deugnier Y et al (1999) A genotypic study of 217 unrelated probands diagnosed as “genetic hemochromatosis” on “classical” phenotypic criteria. J Hepatol 30:588–593

    Article  PubMed  CAS  Google Scholar 

  4. Pietrangelo A (2006) Hereditary hemochromatosis. Annu Rev Nutr 26:251–270

    Article  PubMed  CAS  Google Scholar 

  5. Adams PC, Barton JC (2007) Haemochromatosis. Lancet 370:1855–1860

    Article  PubMed  CAS  Google Scholar 

  6. Ayonrinde OT, Milward EA, Chua AC, Trinder D, Olynyk JK (2008) Clinical perspectives on hereditary hemochromatosis. Crit Rev Clin Lab Sci 45:451–484

    Article  PubMed  CAS  Google Scholar 

  7. Sobotka TJ, Whittaker P, Sobotka JM, Brodie RE, Quander DY, Robl M et al (1996) Neurobehavioral dysfunctions associated with dietary iron overload. Physiol Behav 59:213–219

    Article  PubMed  CAS  Google Scholar 

  8. Fredriksson A, Schroder N, Eriksson P, Izquierdo I, Archer T (1999) Neonatal iron exposure induces neurobehavioural dysfunctions in adult mice. Toxicol Appl Pharmacol 159:25–30

    Article  PubMed  CAS  Google Scholar 

  9. Pinero D, Jones B, Beard J (2001) Variations in dietary iron alter behavior in developing rats. J Nutr 131:311–318

    PubMed  CAS  Google Scholar 

  10. Maaroufi K, Ammari M, Jeljeli M, Roy V, Sakly M, Abdelmelek H (2009) Impairment of emotional behavior and spatial learning in adult Wistar rats by ferrous sulfate. Physiol Behav 96:343–349

    Article  PubMed  CAS  Google Scholar 

  11. Eroglu Y, Byrne WJ (2009) Hepatic encephalopathy. Emerg Med Clin N Am 27:401–414

    Article  Google Scholar 

  12. Bridle KR, Crawford DH, Fletcher LM, Smith JL, Powell LW, Ramm GA (2003) Evidence for a sub-morphological inflammatory process in the liver in haemochromatosis. J Hepatol 38:426–433

    Article  PubMed  CAS  Google Scholar 

  13. Demougeot C, Methy D, Prigent-Tessier A, Garnier P, Bertrand N, Guilland JC et al (2003) Effects of a direct injection of liposoluble iron into rat striatum. Importance of the rate of iron delivery to cells. Free Radic Res 37:59–67

    Article  PubMed  CAS  Google Scholar 

  14. Junxia X, Hong J, Wenfang C, Ming Q (2003) Dopamine release rather than content in the caudate putamen is associated with behavioral changes in the iron rat model of Parkinson’s disease. Exp Neurol 182:483–489

    Article  PubMed  CAS  Google Scholar 

  15. Bueno-Nava A, Gonzalez-Pina R, Alfaro-Rodriguez A (2010) Iron-dextran injection into the substantia nigra in rats decreases striatal dopamine content ipsilateral to the injury site and impairs motor function. Metab Brain Dis 25:235–239

    Article  PubMed  CAS  Google Scholar 

  16. Pinero DJ, Li NQ, Connor JR, Beard JL (2000) Variations in dietary iron alter brain iron metabolism in developing rats. J Nutr 130:254–263

    PubMed  CAS  Google Scholar 

  17. Moos T, Oates PS, Morgan EH (1999) Iron-independent neuronal expression of transferrin receptor mRNA in the rat. Brain Res Mol Brain Res 72:231–234

    Article  PubMed  CAS  Google Scholar 

  18. Kaur D, Peng J, Chinta SJ, Rajagopalan S, Di Monte DA, Cherny RA et al (2007) Increased murine neonatal iron intake results in Parkinson-like neurodegeneration with age. Neurobiol Aging 28:907–913

    Article  PubMed  CAS  Google Scholar 

  19. Wang Q, Luo W, Zheng W, Liu Y, Xu H, Zheng G et al (2007) Iron supplement prevents lead-induced disruption of the blood-brain barrier during rat development. Toxicol Appl Pharmacol 219:33–41

    Article  PubMed  CAS  Google Scholar 

  20. Becker JS, Zoriy M, Matusch A, Wu B, Salber D, Palm C (2010) Bioimaging of metals by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Mass Spectrom Rev 29:156–175

    PubMed  CAS  Google Scholar 

  21. Chang YZ, Qian ZM, Wang K, Zhu L, Yang XD, Du JR et al (2005) Effects of development and iron status on ceruloplasmin expression in rat brain. J Cell Physiol 204:623–631

    Article  PubMed  CAS  Google Scholar 

  22. Ke Y, Chang YZ, Duan XL, Du JR, Zhu L, Wang K et al (2005) Age-dependent and iron-independent expression of two mRNA isoforms of divalent metal transporter 1 in rat brain. Neurobiol Aging 26:739–748

    Article  PubMed  CAS  Google Scholar 

  23. Qian ZM, Chang YZ, Zhu L, Yang L, Du JR, Ho KP et al (2007) Development and iron-dependent expression of hephaestin in different brain regions of rats. J Cell Biochem 102:1225–1233

    Article  PubMed  CAS  Google Scholar 

  24. Crichton RR, Dexter DT, Ward RJ (2011) Brain iron metabolism and its perturbation in neurological diseases. J Neural Transm Suppl 118:301–314

    Article  CAS  Google Scholar 

  25. Miyajima H, Nishimura Y, Mizoguchi K, Sakamoto M, Shimizu T, Honda N (1987) Familial apoceruloplasmin deficiency associated with blepharospasm and retinal degeneration. Neurology 37:761–767

    Article  PubMed  CAS  Google Scholar 

  26. Takahashi Y, Miyajima H, Shirabe S, Nagataki S, Suenaga A, Gitlin JD (1996) Characterization of a nonsense mutation in the ceruloplasmin gene resulting in diabetes and neurodegenerative disease. Hum Mol Genet 5:81–84

    Article  PubMed  CAS  Google Scholar 

  27. Lucato LT, Otaduy MC, Barbosa ER, Machado AA, McKinney A, Bacheschi LA et al (2005) Proton MR spectroscopy in Wilson disease: analysis of 36 cases. AJNR Am J Neuroradiol 26:1066–1071

    PubMed  Google Scholar 

  28. Hellman NE, Gitlin JD (2002) Ceruloplasmin metabolism and function. Annu Rev Nutr 22:439–458

    Article  PubMed  CAS  Google Scholar 

  29. de Bie P, Muller P, Wijmenga C, Klomp LW (2007) Molecular pathogenesis of Wilson and Menkes disease: correlation of mutations with molecular defects and disease phenotypes. J Med Genet 44:673–688

    Article  PubMed  Google Scholar 

  30. McNeill A, Pandolfo M, Kuhn J, Shang H, Miyajima H (2008) The neurological presentation of ceruloplasmin gene mutations. Eur Neurol 60:200–205

    Article  PubMed  Google Scholar 

  31. Duce JA, Tsatsanis A, Cater MA, James SA, Robb E, Wikhe K et al (2010) Iron-export ferroxidase activity of beta-amyloid precursor protein is inhibited by zinc in Alzheimer’s disease. Cell 142:857–867

    Article  PubMed  CAS  Google Scholar 

  32. Rogers JT, Randall JD, Cahill CM, Eder PS, Huang X, Gunshin H et al (2002) An iron-responsive element type II in the 5'-untranslated region of the Alzheimer’s amyloid precursor protein transcript. J Biol Chem 277:45518–45528

    Article  PubMed  CAS  Google Scholar 

  33. Burdo JR, Simpson IA, Menzies S, Beard J, Connor JR (2004) Regulation of the profile of iron-management proteins in brain microvasculature. J Cereb Blood Flow Metab 24:67–74

    Article  PubMed  CAS  Google Scholar 

  34. Elseweidy MM, Abd El-Baky AE (2008) Effect of dietary iron overload in rat brain: oxidative stress, neurotransmitter level and serum metal ion in relation to neurodegenerative disorders. Indian J Exp Biol 46:855–858

    PubMed  CAS  Google Scholar 

  35. Demarquay G, Setiey A, Morel Y, Trepo C, Chazot G, Broussolle E (2000) Clinical report of three patients with hereditary hemochromatosis and movement disorders. Mov Disord 15:1204–1209

    Article  PubMed  CAS  Google Scholar 

  36. Demarquay G, Thobois S, Latour P, Broussolle E (2006) Hereditary hemochromatosis and movement disorders: the still controversial relationship. Response to Russo et al. in J Neurol (2004) 251:849–852. J Neurol 253:261–262

    Article  PubMed  CAS  Google Scholar 

  37. Rutgers MP, Pielen A, Gille M (2007) Chronic cerebellar ataxia and hereditary hemochromatosis: causal or coincidental association? J Neurol 254:1296–1297

    Article  PubMed  CAS  Google Scholar 

  38. Russo N, Edwards M, Andrews T, O’Brien M, Bhatia KP (2004) Hereditary haemochromatosis is unlikely to cause movement disorders–a critical review. J Neurol 251:849–852

    Article  PubMed  Google Scholar 

  39. Fasano A, Bentivoglio AR, Colosimo C (2007) Movement disorder due to aceruloplasminemia and incorrect diagnosis of hereditary hemochromatosis. J Neurol 254:113–114

    Article  PubMed  Google Scholar 

  40. Golub MS, Germann SL, Araiza RS, Reader JR, Griffey SM, Lloyd KC (2005) Movement disorders in the Hfe knockout mouse. Nutr Neurosci 8:239–244

    Article  PubMed  CAS  Google Scholar 

  41. LaVaute T, Smith S, Cooperman S, Iwai K, Land W, Meyron-Holtz E et al (2001) Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nat Genet 27:209–214

    Article  PubMed  CAS  Google Scholar 

  42. Galy B, Holter SM, Klopstock T, Ferring D, Becker L, Kaden S et al (2006) Iron homeostasis in the brain: complete iron regulatory protein 2 deficiency without symptomatic neurodegeneration in the mouse. Nat Genet 38:967–969

    Article  PubMed  CAS  Google Scholar 

  43. Liu M, Xiao DS, Qian ZM (2007) Identification of transcriptionally regulated genes in response to cellular iron availability in rat hippocampus. Mol Cell Biochem 300:139–147

    Article  PubMed  CAS  Google Scholar 

  44. Tefferi A, Bolander ME, Ansell SM, Wieben ED, Spelsberg TC (2002) Primer on medical genomics. Part III: Microarray experiments and data analysis. Mayo Clin Proc 77:927–940

    PubMed  CAS  Google Scholar 

  45. Shi L, Reid LH, Jones WD, Shippy R, Warrington JA, Baker SC et al (2006) The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 24:1151–1161

    Article  PubMed  CAS  Google Scholar 

  46. Chen JJ, Hsueh HM, Delongchamp RR, Lin CJ, Tsai CA (2007) Reproducibility of microarray data: a further analysis of microarray quality control (MAQC) data. BMC Bioinforma 8:412

    Article  Google Scholar 

  47. Quackenbush J (2001) Computational analysis of microarray data. Nat Rev Genet 2:418–427

    Article  PubMed  CAS  Google Scholar 

  48. Workman C, Jensen LJ, Jarmer H, Berka R, Gautier L, Nielser HB et al (2002) A new non-linear normalization method for reducing variability in DNA microarray experiments. Genome Biol 3:research0048

    Google Scholar 

  49. Shippy R, Fulmer-Smentek S, Jensen RV, Jones WD, Wolber PK, Johnson CD et al (2006) Using RNA sample titrations to assess microarray platform performance and normalization techniques. Nat Biotechnol 24:1123–1131

    Article  PubMed  CAS  Google Scholar 

  50. Reiner A, Yekutieli D, Benjamini Y (2003) Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19:368–375

    Article  PubMed  CAS  Google Scholar 

  51. Rothman KJ (1990) No adjustments are needed for multiple comparisons. Epidemiology 1:43–46

    Article  PubMed  CAS  Google Scholar 

  52. Bender R, Lange S (2001) Adjusting for multiple testing–when and how? J Clin Epidemiol 54:343–349

    Article  PubMed  CAS  Google Scholar 

  53. Shi L, Perkins RG, Fang H, Tong W (2008) Reproducible and reliable microarray results through quality control: good laboratory proficiency and appropriate data analysis practices are essential. Curr Opin Biotechnol 19:10–18

    Article  PubMed  CAS  Google Scholar 

  54. Maouche S, Poirier O, Godefroy T, Olaso R, Gut I, Collet JP et al (2008) Performance comparison of two microarray platforms to assess differential gene expression in human monocyte and macrophage cells. BMC Genomics 9:302

    Article  PubMed  Google Scholar 

  55. Clardy SL, Wang X, Zhao W, Liu W, Chase GA, Beard JL et al (2006) Acute and chronic effects of developmental iron deficiency on mRNA expression patterns in the brain. J Neural Transm Suppl 71:173–196

    Article  PubMed  CAS  Google Scholar 

  56. Beard JL, Connor JR (2003) Iron status and neural functioning. Annu Rev Nutr 23:41–58

    Article  PubMed  CAS  Google Scholar 

  57. Ortiz E, Pasquini JM, Thompson K, Felt B, Butkus G, Beard J et al (2004) Effect of manipulation of iron storage, transport, or availability on myelin composition and brain iron content in three different animal models. J Neurosci Res 77:681–689

    Article  PubMed  CAS  Google Scholar 

  58. Beard J, Han O (2009) Systemic iron status. Biochim Biophys Acta 1790:584–588

    Article  PubMed  CAS  Google Scholar 

  59. Fleming RE, Holden CC, Tomatsu S, Waheed A, Brunt EM, Britton RS et al (2001) Mouse strain differences determine severity of iron accumulation in Hfe knockout model of hereditary hemochromatosis. Proc Natl Acad Sci USA 98:2707–2711

    Article  PubMed  CAS  Google Scholar 

  60. Dupic F, Fruchon S, Bensaid M, Loreal O, Brissot P, Borot N et al (2002) Duodenal mRNA expression of iron related genes in response to iron loading and iron deficiency in four strains of mice. Gut 51:648–653

    Article  PubMed  CAS  Google Scholar 

  61. Drake SF, Morgan EH, Herbison CE, Delima R, Graham RM, Chua AC et al (2007) Iron absorption and hepatic iron uptake are increased in a transferrin receptor 2 (Y245X) mutant mouse model of hemochromatosis type 3. Am J Physiol Gastrointest Liver Physiol 292:G323–G328

    Article  PubMed  CAS  Google Scholar 

  62. Moos T, Trinder D, Morgan EH (2000) Cellular distribution of ferric iron, ferritin, transferrin and divalent metal transporter 1 (DMT1) in substantia nigra and basal ganglia of normal and beta2-microglobulin deficient mouse brain. Cell Mol Biol (Noisy-le-grand) 46:549–561

    CAS  Google Scholar 

  63. Lykkesfeldt J, Morgan E, Christen S, Skovgaard LT, Moos T (2007) Oxidative stress and damage in liver, but not in brain, of Fischer 344 rats subjected to dietary iron supplementation with lipid-soluble [(3,5,5-trimethylhexanoyl)ferrocene]. J Biochem Mol Toxicol 21:145–155

    Article  PubMed  CAS  Google Scholar 

  64. Zhou XY, Tomatsu S, Fleming RE, Parkkila S, Waheed A, Jiang J et al (1998) HFE gene knockout produces mouse model of hereditary hemochromatosis. Proc Natl Acad Sci USA 95:2492–2497

    Article  PubMed  CAS  Google Scholar 

  65. Johnstone D, Milward EA (2010) Genome-wide microarray analysis of brain gene expression in mice on a short-term high iron diet. Neurochem Int 56:856–863

    Article  PubMed  CAS  Google Scholar 

  66. Johnstone D, Acikyol B, Graham RM, Trinder D, Scott RJ, Olynyk JK et al (2010) Gene expression studies in three different mouse models support the case for neurologic sequelae in iron overload disorders and provide new insights into mechanism. Society for Neuroscience Meeting, San Diego, USA

    Google Scholar 

  67. Dong XP, Cheng X, Mills E, Delling M, Wang F, Kurz T et al (2008) The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature 455:992–996

    Article  PubMed  CAS  Google Scholar 

  68. Terman A, Brunk UT (2004) Lipofuscin. Int J Biochem Cell Biol 36:1400–1404

    Article  PubMed  CAS  Google Scholar 

  69. Hohn A, Jung T, Grimm S, Grune T (2010) Lipofuscin-bound iron is a major intracellular source of oxidants: role in senescent cells. Free Radic Biol Med 48:1100–1108

    Article  PubMed  Google Scholar 

  70. De Meyer GR, De Keulenaer GW, Martinet W (2010) Role of autophagy in heart failure associated with aging. Hear Fail Rev 15:423–430

    Article  Google Scholar 

  71. Brunk UT, Jones CB, Sohal RS (1992) A novel hypothesis of lipofuscinogenesis and cellular aging based on interactions between oxidative stress and autophagocytosis. Mutat Res 275:395–403

    Article  PubMed  CAS  Google Scholar 

  72. Gray DA, Woulfe J (2005) Lipofuscin and aging: a matter of toxic waste. Sci Aging Knowledge Environ 2005:re1

    Article  PubMed  Google Scholar 

  73. Street VA, Bennett CL, Goldy JD, Shirk AJ, Kleopa KA, Tempel BL et al (2003) Mutation of a putative protein degradation gene LITAF/SIMPLE in Charcot-Marie-Tooth disease 1C. Neurology 60:22–26

    Article  PubMed  CAS  Google Scholar 

  74. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  PubMed  CAS  Google Scholar 

  75. Wilhelm BT, Marguerat S, Watt S, Schubert F, Wood V, Goodhead I et al (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453:1239–1243

    Article  PubMed  CAS  Google Scholar 

  76. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  PubMed  CAS  Google Scholar 

  77. Nagalakshmi U, Waern K, Snyder M (2010) RNA-Seq: a method for comprehensive transcriptome analysis. Curr Protoc Mol Biol Chapter 4:Unit 4.11.11–13

  78. Morey JS, Ryan JC, Van Dolah FM (2006) Microarray validation: factors influencing correlation between oligonucleotide microarrays and real-time PCR. Biol Proced Online 8:175–193

    Article  PubMed  CAS  Google Scholar 

  79. Twine NA, Janitz K, Wilkins MR, Janitz M (2011) Whole transcriptome sequencing reveals gene expression and splicing differences in brain regions affected by Alzheimer’s disease. PLoS One 6:e16266

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Milward .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Milward, E. et al. (2012). Brain changes in iron loading disorders. In: Linert, W., Kozlowski, H. (eds) Metal Ions in Neurological Systems. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1001-0_2

Download citation

Publish with us

Policies and ethics