Skip to main content

Mechanisms of Chromosome Rearrangements

  • Chapter
  • First Online:
Plant Genome Diversity Volume 2

Abstract

The striking diversity of land plants is associated with immense genetic variation manifested also by a wide range of genome sizes and chromosome numbers. Nuclear genome size across land plants varies more than 2,300-fold from ~64 Mb (Genlisea aurea; Greilhuber et al. 2006) to ~150,000 Mb (Paris japonica; Pellicer et al. 2010). Accordingly, chromosome numbers can vary from n = 2 in six angiosperm species (Vanzela et al. 1996; Cremonini 2,005) to n > 320 in the angiosperm Sedum suaveolens (Uhl 1978) and n = c. 720 in the fern Ophioglossum reticulatum (Khandelwal 1990). This extensive variation of chromosome numbers among land plants is driven by two main trends in opposite directions: chromosome numbers increase through polyploidy (whole-genome duplications, WGD) and decrease through structural chromosome rearrangements (descending dysploidy). Genomic and cytogenetic analyses indicate that probably all land plants have experienced at least one WGD event (Jaillon et al. 2009; Soltis et al. 2009; Van de Peer et al. 2009; see also Fawcett et al. 2012, this volume) followed by more or less extensive karyotype reshuffling towards diploid-like genomes (e.g. Wolfe 2001; Thomas et al. 2006; Cenci et al. 2010; Mandáková et al. 2010a). Karyotypic changes at a given ploidy level are mediated by chromosome rearrangements such as insertions, duplications, deletions, inversions and translocations altering the size and morphology of chromosomes. Centric fissions and different types of reciprocal translocations combined with meiotic (mis)segregation may lead to a reduction or increase of chromosome number (descending/ascending dysploidy).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrouk M, Murat F, Pont C, Messing J, Jackson S, Faraut T, Tannier E, Plomion C, Cooke R, Feuillet C, Salse J (2010) Palaeogenomics of plants: synteny-based modelling of extinct ancestors. Trends Plant Sci 15:479–487

    Article  PubMed  CAS  Google Scholar 

  • Cenci A, Combes M-C, Lashermes P (2010) Comparative sequence analyses indicate that Coffea (Asterids) and Vitis (Rosids) derive from the same paleo-hexaploid ancestral genome. Mol Genet Genomics 283:493–501

    Article  PubMed  CAS  Google Scholar 

  • Cohen S, Houben A, Segal D (2008) Extrachromosomal circular DNA derived from tandemly repeated genomic sequences in plants. Plant J 53:1027–1034

    Article  PubMed  CAS  Google Scholar 

  • Cremonini R (2005) Low chromosome number angiosperms. Caryologia 58:403–409

    Google Scholar 

  • Darlington CD (1937) Recent advances in cytology. J. & A. Churchill, London

    Google Scholar 

  • Datson PM, Murray BG (2006) Ribosomal DNA locus evolution in Nemesia: transposition rather than structural rearrangement as the key mechanism? Chromosome Res 14:845–857

    Article  PubMed  CAS  Google Scholar 

  • Delprat A, Negre B, Puig M, Ruiz A (2009) The transposon Galileo generates natural chromosomal inversions in Drosophila by ectopic recombination. PLoS One 4(11):e7883. doi:10.1371/journal.pone.0007883

    Article  PubMed  Google Scholar 

  • Dubcovsky J, Dvorák J (1995) Ribosomal RNA multigene loci: nomads of the Triticeae genomes. Genetics 140:1367–1377

    PubMed  CAS  Google Scholar 

  • Fawcett JA, Van de Peer Y, Maere S (2013) Significance and biological consequences of polyploidization in land plants. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 277–293

    Google Scholar 

  • Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC (2007) Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell 19:3403–3417

    Article  PubMed  CAS  Google Scholar 

  • Gaut BS, Wright SI, Rizzon C, Dvorák J, Anderson LK (2007) Recombination: an underappreciated factor in the evolution of plant genomes. Nat Rev Genet 8:77–84

    Article  PubMed  CAS  Google Scholar 

  • Greilhuber J, Borsch T, Müller K, Worberg A, Porembski S, Barthlott W (2006) Smallest angiosperm genomes found in Lentibulariaceae, with chromosomes of bacterial size. Plant Biol 8:770–777

    Article  PubMed  CAS  Google Scholar 

  • Griffiths AJF, Gelbart WM, Lewontin RC (2007) Introduction to genetic analysis. W. H. Freeman, New York

    Google Scholar 

  • Gu W, Zhang F, Lupski JR (2008) Mechanisms for human genomic rearrangements. Pathogenetics 1:4

    Article  PubMed  Google Scholar 

  • Hall KJ, Parker JS (1995) Stable chromosome fission associated with rDNA mobility. Chromosome Res 3:417–422

    Article  PubMed  CAS  Google Scholar 

  • Han F, Gao Z, Birchler JA (2009a) Reactivation of an inactive centromere reveals epigenetic and structural components for centromere specification in maize. Plant Cell 21:1929–1939

    Article  PubMed  CAS  Google Scholar 

  • Han Y, Zhang Z, Liu C, Liu J, Huang S, Jiang J, Jin W (2009b) Centromere repositioning in cucurbit species: implication of the genomic impact from centromere activation and inactivation. Proc Natl Acad Sci USA 106:14937–14941

    Article  PubMed  CAS  Google Scholar 

  • Imai HT (1991) Mutability of constitutive heterochromatin (C bands) during eukaryotic chromosomal evolution and their cytological meaning. Jpn J Genet 66:635–661

    Article  PubMed  CAS  Google Scholar 

  • International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  Google Scholar 

  • Jaillon O, Aury J-M, Wincker P (2009) “Changing by doubling”, the impact of whole genome duplications in the evolution of eukaryotes. C R Biol 332:241–253

    Article  PubMed  CAS  Google Scholar 

  • Jones K (1998) Robertsonian fusion and centric fission in karyotype evolution of higher plants. Bot Rev 64:273–289

    Article  Google Scholar 

  • Khandelwal S (1990) Chromosome evolution in the genus Ophioglossum L. Bot J Linn Soc 102:205–217

    Article  Google Scholar 

  • Leitch IJ, Leitch AR (2013) Genome size diversity and evolution in land plants. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 307–322

    Google Scholar 

  • Levin DA (2002) The role of chromosomal change in plant evolution. Oxford University Press, New York

    Google Scholar 

  • Luo MC, Deal KR, Akhunov ED, Akhunova AR, Anderson OD, Anderson JA, Blake N, Clegg MT, Coleman-Derr D, Conley EJ, Crossman CC, Dubcovsky J, Gill BS, Gu YQ, Hadam J, Heo HY, Huo N, Lazo G, Ma Y, Matthews DE, McGuire PE, Morrell PL, Qualset CO, Renfro J, Tabanao D, Talbert LE, Tian C, Toleno DM, Warburton ML, You FM, Zhang W, Dvorák J (2009) Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae. Proc Natl Acad Sci USA 106:15780–15785

    Article  PubMed  CAS  Google Scholar 

  • Lysák MA, Berr A, Pecinka A, Schmidt R, McBreen K, Schubert I (2006) Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Natl Acad Sci USA 103:5224–5229

    Article  PubMed  CAS  Google Scholar 

  • Mandáková T, Joly S, Krzywinski M, Mummenhoff K, Lysák MA (2010a) Fast diploidization in close mesopolyploid relatives of Arabidopsis. Plant Cell 22:2277–2290

    Article  PubMed  Google Scholar 

  • Mandáková T, Heenan PB, Lysák MA (2010b) Island species radiation and karyotypic stasis in Pachycladon allopolyploids. BMC Evol Biol 10:367

    Article  PubMed  Google Scholar 

  • McClintock B (1948) Mutable loci in maize. Carnegie Inst Wash Year Book, vol 47., pp 155–169

    Google Scholar 

  • Murat F, Xu JH, Tannier E, Abrouk M, Guilhot N, Pont C, Messing J, Salse J (2010) Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution. Genome Res 20:1545–1557

    Article  PubMed  CAS  Google Scholar 

  • Murata M, Yokota E, Shibata F, Kashihara K (2008) Functional analysis of the Arabidopsis centromere by T-DNA insertion-induced centromere breakage. Proc Natl Acad Sci USA 105:7511–7516

    Article  PubMed  CAS  Google Scholar 

  • Nasuda S, Hudakova S, Schubert I, Houben A, Endo TR (2005) Stable barley chromosomes without centromeric repeats. Proc Natl Acad Sci USA 102:9842–9847

    Article  PubMed  CAS  Google Scholar 

  • Navrátilová A, Koblízková A, Macas J (2008) Survey of extrachromosomal circular DNA derived from plant satellite repeats. BMC Plant Biol 8:90

    Article  PubMed  Google Scholar 

  • Nicolas SD, Le Mignon G, Eber F, Coriton O, Monod H, Clouet V, Huteau V, Lostanlen A, Delourme R, Chalhoub B, Ryder CD, Chèvre AM, Jenczewski E (2007) Homeologous recombination plays a major role in chromosome rearrangements that occur during meiosis of Brassica napus haploids. Genetics 175:487–503

    Article  PubMed  CAS  Google Scholar 

  • Page SL, Shin J-C, Han J-Y, Choo KH, Andy SLG (1996) Breakpoint diversity illustrates distinct mechanisms for Robertsonian translocation formation. Hum Mol Genet 5:1279–1288

    Article  PubMed  CAS  Google Scholar 

  • Pellicer J, Fay MF, Leitch IJ (2010) The largest eukaryotic genome of them all. Bot J Linn Soc 164:10–15

    Article  Google Scholar 

  • Perry J, Nouri S, La P, Daniel A, Wu Z, Purvis-Smith S, Northrop E, Choo KH, Slater HR (2005) Molecular distinction between true centric fission and pericentric duplication-fission. Hum Genet 116:300–310

    Article  PubMed  Google Scholar 

  • Piras FM, Nergadze SG, Magnani E, Bertoni L, Attolini C, Khoriauli L, Raimondi E, Giulotto E (2010) Uncoupling of satellite DNA and centromeric function in the genus Equus. PLoS Genet 6:e1000845

    Article  PubMed  Google Scholar 

  • Pulletikurti V, Yu C, Zhang J, Peterson T, Weber DF (2009) Cytological evidence that alternative transposition by Ac elements causes reciprocal translocations and inversions in Zea mays L. Maydica 54:457–462

    Google Scholar 

  • Ranz JM, Maurin D, Chan YS, von Grotthuss M, Hillier LW, Roote J, Ashburner M, Bergman CM (2007) Principles of genome evolution in the Drosophila melanogaster species group. PLoS Biol 5:e152

    Article  PubMed  Google Scholar 

  • Raskina O, Belyayev A, Nevo E (2004) Quantum speciation in Aegilops: molecular cytogenetic evidence from rDNA cluster variability in natural populations. Proc Natl Acad Sci USA 101:14818–14823

    Article  PubMed  CAS  Google Scholar 

  • Raskina O, Barber JC, Nevo E, Belyayev A (2008) Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Cytogenet Genome Res 120:351–357

    Article  PubMed  CAS  Google Scholar 

  • Rocchi M, Stanyon R, Archidiacono N (2009) Evolutionary new centromeres in primates. Prog Mol Subcell Biol 48:103–152

    Article  PubMed  CAS  Google Scholar 

  • Runcie DE, Noor MAF (2009) Sequence signatures of a recent chromosomal rearrangement in Drosophila mojavensis. Genetica 136:5–11

    Article  PubMed  CAS  Google Scholar 

  • Salse J, Bolot S, Throude M, Jouffe V, Piegu B, Quraishi UM, Calcagno T, Cooke R, Delseny M, Feuillet C (2008) Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell 20:11–24

    Article  PubMed  CAS  Google Scholar 

  • Salse J, Abrouk M, Bolot S, Guilhot N, Courcelle E, Faraut T, Waugh R, Close TJ, Messing J, Feuillet C (2009) Reconstruction of monocotelydoneous proto-chromosomes reveals faster evolution in plants than in animals. Proc Natl Acad Sci USA 106:14908–14913

    Article  PubMed  CAS  Google Scholar 

  • Schubert I (1992) Telomeric polymorphism in Vicia faba. Biol Zbl 111:164–168

    Google Scholar 

  • Schubert I (2007) Chromosome evolution. Curr Opin Plant Biol 10:109–115

    Article  PubMed  CAS  Google Scholar 

  • Schubert I, Lysák MA (2011) Interpretation of karyotype evolution should consider chromosome structural constraints. Trends Genet 27:207–216

    Article  PubMed  CAS  Google Scholar 

  • Schubert I, Rieger R (1985) A new mechanism for altering chromosome number during karyotype evolution. Theor Appl Genet 70:213–221

    Google Scholar 

  • Schubert I, Wobus U (1985) In situ hybridization confirms jumping nucleolus organizing regions in Allium. Chromosoma 92:143–148

    Article  Google Scholar 

  • Schubert I, Rieger R, Michaelis A (1988) On the toleration of duplications and deletions by the Vicia faba genome. Theor Appl Genet 76:64–70

    Article  Google Scholar 

  • Schubert I, Rieger R, Fuchs J (1995) Alteration of basic chromosome number by fusion-fission cycles. Genome 38:1289–1292

    Article  PubMed  CAS  Google Scholar 

  • Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng CF, Sankoff D, dePamphilis CW, Wall PK, Soltis PS (2009) Polyploidy and angiosperm diversification. Am J Bot 96:336–348

    Article  PubMed  Google Scholar 

  • Stebbins GL (1971) Chromosomal evolution in higher plants. Edward Arnold, London

    Google Scholar 

  • Stimpson KM, Sullivan BA (2010) Epigenomics of centromere assembly and function. Curr Opin Cell Biol 22:1–9

    Article  Google Scholar 

  • Sullivan BA, Jenkins LS, Karson EM, Leana-Cox J, Schwartz S (1996) Evidence for structural heterogeneity from molecular cytogenetic analysis of dicentric Robertsonian translocations. Am J Hum Genet 59:167–175

    PubMed  CAS  Google Scholar 

  • Thiel T, Graner A, Waugh R, Grosse I, Close TJ, Stein N (2009) Evidence and evolutionary analysis of ancient whole-genome duplication in barley predating the divergence from rice. BMC Evol Biol 9:209

    Article  PubMed  Google Scholar 

  • Thomas BC, Pedersen B, Freeling M (2006) Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homeolog leaving clusters enriched in dose-sensitive genes. Genome Res 16:934–946

    Article  PubMed  CAS  Google Scholar 

  • Tsujimoto H, Usami N, Hasegawa K, Yamada T, Nagaki K, Sasakuma T (1999) De novo synthesis of telomere sequences at the healed breakpoints of wheat deletion chromosomes. Mol Gen Genet 262:851–856

    Article  PubMed  CAS  Google Scholar 

  • Udall JA, Quijada PA, Osborn TC (2005) Detection of chromosomal rearrangements derived from homologous recombination in four mapping populations of Brassica napus L. Genetics 169:967–979

    Article  PubMed  CAS  Google Scholar 

  • Uhl CH (1978) Chromosomes of Mexican Sedum II. Section Pachysedum. Rhodora 80:491–512

    Google Scholar 

  • Van de Peer Y, Fawcett JA, Proost S, Sterck L, Vandepoele K (2009) The flowering world: a tale of duplications. Trends Plant Sci 14:680–688

    Article  PubMed  Google Scholar 

  • Vanzela ALL, Guerra M, Luceno M (1996) Rhynchospora tenuis Link (Cyperaceae), a species with the lowest number of holocentric chromosomes (n = 2). Cytobios 88:219–228

    Google Scholar 

  • Ventura M, Mudge JM, Palumbo V, Burn S, Blennow E, Pierluigi M, Giorda R, Zuffardi O, Archidiacono N, Jackson MS, Rocchi M (2003) Neocentromeres in 15q24–26 map to duplicons which flanked an ancestral centromere in 15q25. Genome Res 13:2059–2068

    Article  PubMed  CAS  Google Scholar 

  • Ventura M, Antonacci F, Cardone MF, Stanyon R, D’Addabbo P, Cellamare A, Sprague LJ, Eichler EE, Archidiacono N, Rocchi M (2007) Evolutionary formation of new centromeres in macaque. Science 316:243–246

    Article  PubMed  CAS  Google Scholar 

  • Voullaire LE, Slater HR, Petrovic V, Choo KH (1993) A functional marker centromere with no detectable alpha-satellite, satellite III, or CENP-B protein: activation of a latent centromere? Am J Hum Genet 52:1153–1163

    PubMed  CAS  Google Scholar 

  • Wei F, Coe E, Nelson W, Bharti AK, Engler F, Butler E, Kim H, Goicoechea JL, Chen M, Lee S, Fuks G, Sanchez-Villeda H, Schroeder S, Fang Z, McMullen M, Davis G, Bowers JE, Paterson AH, Schaeffer M, Gardiner J, Cone K, Messing J, Soderlund C, Wing RA (2007) Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genet 3:e123

    Article  PubMed  Google Scholar 

  • Weil CF (2009) Too many ends: aberrant transposition. Genes Dev 23:1032–1036

    Article  PubMed  CAS  Google Scholar 

  • Wolfe KH (2001) Yesterday’s polyploids and the mystery of diploidization. Nat Rev Genet 2:333–341

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Bennetzen JL (2009) Distribution, diversity, evolution, and survival of Helitrons in the maize genome. Proc Natl Acad Sci USA 106:19922–19927

    PubMed  CAS  Google Scholar 

  • Yu S, Graf WD (2010) Telomere capture as a frequent mechanism for stabilization of the terminal chromosomal deletion associated with inverted duplication. Cytogenet Genome Res 129:265–274

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Yu C, Pulletikurti V, Lamb J, Danilova T, Weber DF, Birchler J, Peterson T (2009) Alternative Ac/Ds transposition induces major chromosomal rearrangements in maize. Genes Dev 23:755–765

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin A. Lysák .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Lysák, M.A., Schubert, I. (2013). Mechanisms of Chromosome Rearrangements. In: Greilhuber, J., Dolezel, J., Wendel, J. (eds) Plant Genome Diversity Volume 2. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1160-4_9

Download citation

Publish with us

Policies and ethics