Skip to main content

Chromera et al.: Novel Photosynthetic Alveolates and Apicomplexan Relatives

  • Chapter
  • First Online:
Endosymbiosis

Abstract

The Apicomplexa were for long represented only by non-photosynthetic parasites, despite the vast majority of them housing a plastid surrounded by four membranes. The amount of membranes already pointed towards the secondary evolutionary origin of the organelle, and phylogenetic analysis then showed it to be of rhodophyte origin. The discovery of Chromera velia now provides the link that connects the parasitic phylum with its algal past. Other chromerids have since been described and within a few years many different research fields have begun to explore this new branch at the bottom of the apicomplexan phylum. We summarize reports from various disciplines and provide an overview of the current topics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson-White BR, Ivey FD, Cheng K, Szatanek T, Lorestani A, Beckers CJ, Ferguson DJ, Sahoo N, Gubbels MJ (2010) A family of intermediate filament-like proteins is sequentially assembled into the cytoskeleton of Toxoplasma gondii. Cell Microbiol 13:18–31

    Article  Google Scholar 

  • Appleton PL, Vickerman K (1996) Presence of apicomplexan-type micropores in a parasitic dinoflagellate, Hematodinium sp. Parasitol Res 3:279–282

    Article  Google Scholar 

  • Archibald JM (2009) The puzzle of plastid evolution. Curr Biol 19:R81–R88

    Article  PubMed  CAS  Google Scholar 

  • Bodyl A, Stiller JW, Mackiwwicz P (2009) Chromalveolate plastids: direct descent or multiple endosymbioses? Trends Ecol Evol 24:119–121

    Article  PubMed  Google Scholar 

  • Botté CY, Yamaryo-Botté Y, Janouskovec J, Rupasinghe T, Keeling PJ, Crellin P, Coppel RL, Maréchal E, McConville MJ, McFadden GI (2011) Identification of plant-like galactolipids in Chromera velia, a photosynthetic relative of malaria parasites. J Biol Chem 286:29893–29903

    Article  PubMed  Google Scholar 

  • Cavalier-Smith T (1993) Kingdom Protozoa and its 18 phyla. Microbiol Rev 57:953–994

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol 46:347–366

    Article  PubMed  CAS  Google Scholar 

  • Fitt WK, Trench RK (1983) Endocytosis of the symbiotic dinoflagellate Symbiodinium microadriaticum Freudenthal by endodermal cells of the scyphistomae of Cassiopeia xamachana and resistance of the algae to host digestion. J Cell Sci 64:195–212

    PubMed  CAS  Google Scholar 

  • Freudenthal HD (1962) Symbiodinium gen. nov. and Symbiodinium microadriaticum sp. nov., a Zooxanthella: taxonomy, life cycles and morphology. J Protozoology 9:45–52

    Article  Google Scholar 

  • Gabrielsen TM, Minge MA, Espelund M, Tooming-Klunderud A, Patil V, Nederbragt AJ, Otis C, Turmel M, Shalchian-Tabrizi K, Lemieux C, Jakobsen KS (2011) Genome evolution of a tertiary dinoflagellate plastid. PLoS One 6:e19132

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Mendoza E, Colombo-Pallotta MF (2007) The giant kelp Macrocystis pyrifera presents a different nonphotochemical quenching control than higher plants. New Phytol 173:526–536

    Article  PubMed  CAS  Google Scholar 

  • Gould SB, Tham WH, Cowman AF, McFadden GI, Waller RF (2008a) Alveolins, a new family of cortical proteins that define the protist infrakingdom Alveolata. Mol Biol Evol 25:1219–1230

    Article  PubMed  CAS  Google Scholar 

  • Gould SB, Waller RF, McFadden GI (2008b) Plastid evolution. Annu Rev Plant Biol 59:491–517

    Article  PubMed  CAS  Google Scholar 

  • Green BR (2011) After the primary endosymbiosis: an update on the chromalveolate hypothesis and the origins of algae with Chl c. Photosynth Res 107:103–115

    Article  PubMed  CAS  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can J Microbiol 8:229–239

    Article  PubMed  CAS  Google Scholar 

  • Guo JT, Weatherby K, Carter D, Slapeta J (2010) Effect of nutrient concentration and salinity on immotile–motile transformation of Chromera velia. J Eukaryot Microbiol 57:444–446

    Article  PubMed  Google Scholar 

  • Horton P, Johnson MP, Perez-Bueno ML, Kiss AZ, Ruban AV (2008) Photosynthetic acclimation: does the dynamic structure and macro-organisation of photosystem II in higher plant grana membranes regulate light harvesting states? FEBS J 275:1069–1079

    Article  PubMed  CAS  Google Scholar 

  • Janouskovec J, Horák A, Oborník M, Lukes J, Keeling PJ (2010) A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc Natl Acad Sci USA 107:10949–10954

    Article  PubMed  Google Scholar 

  • Joyard J, Ferro M, Masselon C, Seigneurin-Berny D, Salvi D, Garin J, Rolland N (2010) Chloroplast proteomics highlights the subcellular compartmentation of lipid metabolism. Prog Lipid Res 49:128–158

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ (2009) Chromalveolates and the evolution of plastids by secondary endosymbiosis. J Eukaryot Microbiol 56:1–8

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ (2010) The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond B Biol Sci 365:729–748

    Article  PubMed  CAS  Google Scholar 

  • Koreny L, Sobotka R, Janouskovec J, Keeling PJ, Obornik M (2011) Tetrapyrrole synthesis of photosynthetic chromerids is likely homologous to the unusual pathway of apicomplexan parasites. Plant Cell 23:3454–3462

    Article  PubMed  CAS  Google Scholar 

  • Kotabova E, Kan R, Jarešová J, Prášil O (2011) Non-photochemical fluorescence quenching in Chromera velia is enabled by fast violaxanthin de-epoxidation. FEBS Lett 585:1941–1945

    Article  PubMed  CAS  Google Scholar 

  • Lang-Unnasch N, Aiello DP (1999) Sequence evidence for an altered genetic code in the Neospora caninum plastid. Int J Parasitol 29:1557–1562

    Article  PubMed  CAS  Google Scholar 

  • Marechal E, Azzouz N, de Macedo CS, Block MA, Feagin JE, Schwarz RT, Joyard J (2002) Synthesis of chloroplast galactolipids in apicomplexan parasites. Eukaryot Cell 1:653–656

    Article  PubMed  CAS  Google Scholar 

  • Martin W (2003) Gene transfer from organelles to the nucleus: frequent and in big chunks. Proc Natl Acad Sci U S A 100:8612–8614

    Article  PubMed  CAS  Google Scholar 

  • McFadden GI (2011) The apicoplast. Protoplasma 248:641–650

    Article  PubMed  Google Scholar 

  • Moore RB, Oborník M, Janouskovec J, Chrudimský T, Vancová M, Green DH, Wright SW, Davies NW, Bolch CJ, Heimann K, Slapeta J, Hoegh-Guldberg O, Logsdon JM, Carter DA (2008) A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451:959–963

    Article  PubMed  CAS  Google Scholar 

  • Morin-Adeline V, Foster C, Slapeta J (2012) Identification of Chromera velia by fluorescence in situ hybridization. FEMS Microbiol Lett 328:144–149

    Article  PubMed  CAS  Google Scholar 

  • Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K, Bhattacharya D (2009) Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science 324:1724–1726

    Article  PubMed  CAS  Google Scholar 

  • Nichols BA, Chiappano ML, Pavesio CEN (1994) Endocytosis at the micropore of Toxoplasma gondii. Parasitol Res 80:91–98

    Article  PubMed  CAS  Google Scholar 

  • Obornik M, Vancová M, Laia DH, Janouskovec J, Keeling PJ, Lukes J (2011) Morphology and ultrastructure of multiple life cycle stages of the photosynthetic relative of apicomplexa, Chromera velia. Protist 162:115–130

    Article  PubMed  Google Scholar 

  • Oborník M, Modrý D, Lukeš M, Cernotíková-Stříbrná E, Cihlář J, Tesařová M, Kotabová E, Vancová M, Prášil O, Lukeš J (2012) Morphology, ultrastructure and life cycle of Vitrella brassicaformis n. sp., n. gen., a novel chromerid from the great barrier reef. Protist 163:306–323

    Article  PubMed  Google Scholar 

  • Okamoto N, McFadden GI (2008) The mother of all parasites. Future Microbiol 3:391–395

    Article  CAS  Google Scholar 

  • Pan H, Slapeta J, Carter D, Chen M (2012) Phylogenetic analysis of the light-harvesting system in Chromera velia. Photosynth Res 111:19–28

    Article  PubMed  CAS  Google Scholar 

  • Sinden RE, Talman A, Marques SR, Wass MN, Sternberg MJE (2010) The flagellum in malarial parasites. Curr Opin Microbiol 13:491–500

    Article  PubMed  CAS  Google Scholar 

  • Striepen B, Jordan CN, Reiff S, van Dooren GG (2007) Building the perfect parasite: cell division in apicomplexa. PLoS Pathog 3:e78

    Article  PubMed  Google Scholar 

  • Weatherby K, Murray S, Carter D, Slapeta J (2011) Surface and flagella morphology of the motile form of Chromera velia revealed by field-emission scanning electron microscopy. Protist 162:142–153

    Article  PubMed  Google Scholar 

  • Woehle C, Dagan T, Martin WF, Gould SB (2011) Red and problematic green phylogenetic signals among thousands of nuclear genes from the photosynthetic and apicomplexa-related Chromera velia. Genome Biol Evol 3:1220–1230

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the SFF fund of the HHU Düsseldorf and an DFG grant to SBG, an ERC grant to William F. Martin and by an Australian Research Council grant to DC (Discovery Project DP0986372). ML is supported by the William Murrell Memorial Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven B. Gould .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Linares, M., Carter, D., Gould, S.B. (2014). Chromera et al.: Novel Photosynthetic Alveolates and Apicomplexan Relatives. In: Löffelhardt, W. (eds) Endosymbiosis. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1303-5_10

Download citation

Publish with us

Policies and ethics