Skip to main content

Nucleomorph Comparative Genomics

  • Chapter
  • First Online:
Endosymbiosis

Abstract

Nucleomorphs are vestigial nuclei of endosymbiotic origin found in cryptomonad and chlorarachniophyte algae. A wealth of molecular and comparative genomic data has been generated in recent years providing insight on the origins and evolution of these peculiar organelles. The cryptomonad nucleomorph (and its associated plastid) has been shown to be the product of a secondary (i.e., eukaryote–eukaryote) endosymbiotic event involving a red alga and a heterotrophic host, while chlorarachniophytes have a green algal-derived nucleomorph. Despite their independent origins, the nucleomorphs of both lineages show similar features, most notably the presence of three linear chromosomes and sub-telomeric ribosomal DNA operons. Recent study has revealed similarities between the cryptomonad and chlorarachniophyte nucleomorphs not only in their genome structures but also in their coding content. Significant differences nevertheless exist. For example, spliceosomal introns are rare (or completely absent) in cryptomonad nucleomorph genomes but highly abundant in chlorarachniophytes. In this chapter, we review the current state of knowledge of nucleomorph genome biology, focusing on the evolution, diversity, and function of nucleomorphs in the two lineages that bear them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Archibald JM (2007) Nucleomorph genomes: structure, function, origin and evolution. Bioessays 29:392–402

    Article  PubMed  CAS  Google Scholar 

  • Archibald JM, Lane CE (2009) Going, going, not quite gone: nucleomorphs as a case study in nuclear genome reduction. J Hered 100:582–590

    Article  PubMed  CAS  Google Scholar 

  • Bock R, Timmis JN (2008) Reconstructing evolution: gene transfer from plastids to the nucleus. Bioessays 30:556–566

    Article  PubMed  CAS  Google Scholar 

  • Burki F, Shalchian-Tabrizi K, Pawlowski J (2008) Phylogenomics reveals a new ‘megagroup’ including most photosynthetic eukaryotes. Bio Lett 4:366–369

    Article  Google Scholar 

  • Burki F, Inagaki Y, Brate J, Archibald JM, Keeling PJ, Cavalier-Smith T, Sakaguchi M, Hashimoto T, Horak A, Kumar S, Klaveness D, Jakobsen KS, Pawlowski J, Shalchian-Tabrizi K (2009) Large-scale phylogenomic analyses reveal that two enigmatic protist lineages, telonemia and centroheliozoa, are related to photosynthetic chromalveolates. Genome Biol Evol 1:231–238

    Article  PubMed  Google Scholar 

  • Cavalier-Smith T (2002) Nucleomorphs: enslaved algal nuclei. Curr Opin Microbiol 5:612–619

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T, Couch JA, Thorsteinsen KE, Gilson P, Deane JA, Hill DRA, McFadden GI (1996) Cryptomonad nuclear and nucleomorph 18S rRNA phylogeny. Eur J Phycol 31:315–328

    Article  Google Scholar 

  • Curtis BA, Tanifuji G, Burki F, Gruber A, Irimia M, Maruyama S, Arias MC, Ball SG, Gile GH, Hirakawa Y, Hopkins JF, Kuo A, Rensing SA, Schmutz J, Symeonidi A, Elias M, Eveleigh RJM, Herman EK, Klute MJ, Nakayama T, Oborník M, Reyes-Prieto A, Armbrust EV, Aves SJ, Beiko RG, Coutinho P, Dacks JB, Durnford DG, Fast NM, Green BR, Grisdale C, Hempel F, Henrissat B, Höppner MP, Ishida K, Kim E, Kořený L, Kroth PG, Liu Y, Malik S-B, Maier UG, McRose D, Mock T, Neilson JAD, Onodera NT, Poole AM, Pritham EJ, Richards TA, Rocap G, Roy SW, Sarai C, Schaack S, Shirato S, Slamovits CH, Spencer DF, Suzuki S, Worden AZ, Zauner S, Barry K, Bell C, Bharti AK, Crow JA, Grimwood J, Kramer R, Lindquist E, Lucas S, Salamov A, McFadden GI, Lane CE, Keeling PJ, Gray MW, Grigoriev IV, Archibald JM (2012) Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature 492:59–65

    Article  PubMed  CAS  Google Scholar 

  • Daley DO, Whelan J (2005) Why genes persist in organelle genomes. Genome Biol 6:110

    Article  PubMed  Google Scholar 

  • Deane JA, Isabbelle M, Strachan IM, Saunders GW, Hill DRA, McFadden GI (2002) Cryptomonad evolution: nuclear 18SrDNA phycologeny versus cell morphology and pigmentation. J Phycol 38:1236–1244

    Article  CAS  Google Scholar 

  • Deber CM, Liu LP, Wang C (1999) Perspective: peptides as mimics of transmembrane segments in proteins. J Pept Res 54:200–205

    Article  PubMed  CAS  Google Scholar 

  • Degnan PH, Lazarus AB, Wernegreen JJ (2005) Genome sequence of Blochmannia pennsylvanicus indicates parallel evolutionary trends among bacterial mutualists of insects. Genome Res 15:1023–1033

    Article  PubMed  CAS  Google Scholar 

  • Derelle E, Ferraz C, Rombauts S, Rouze P, Worden AZ, Robbens S, Partensky F, Degroeve S, Echeynie S, Cooke R, Saeys Y, Wuyts J, Jabbari K, Bowler C, Panaud O, Piegu B, Ball SG, Ral JP, Bouget FY, Piganeau G, De Baets B, Picard A, Delseny M, Demaille J, Van de Peer Y, Moreau H (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci U S A 103:11647–11652

    Article  PubMed  CAS  Google Scholar 

  • Dolezal P, Likic V, Tachezy J, Lithgow T (2006) Evolution of the molecular machines for protein import into mitochondria. Science 313:314–318

    Article  PubMed  CAS  Google Scholar 

  • Donaher N, Tanifuji G, Onodera NT, Malfatti SA, Chain PSG, Hara Y, Archibald JM (2009) The complete plastid genome sequence of the secondarily nonphotosynthetic alga Cryptomonas paramecium: reduction, compaction, and accelerated evolutionary rate. Genome Biol Evol 1:439–448

    Article  PubMed  Google Scholar 

  • Douglas SE, Penny SL (1999) The plastid genome of the cryptophyte alga, Guillardia theta: complete sequence and conserved synteny groups confirm its common ancestry with red algae. J Mol Evol 48:236–244

    Article  PubMed  CAS  Google Scholar 

  • Douglas SE, Durnford DG, Morden CW (1990) Nucleotide sequence of the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from Cryptomonas phi : evidence supporting the polyphyletic origin of plastids. J Phycol 26:500–508

    Article  CAS  Google Scholar 

  • Douglas S, Zauner S, Fraunholz M, Beaton M, Penny S, Deng LT, Wu XN, Reith M, Cavalier-Smith T, Maier UG (2001) The highly reduced genome of an enslaved algal nucleus. Nature 410:1091–1096

    Article  PubMed  CAS  Google Scholar 

  • Eschbach S, Hofmann CJB, Maier UG, Sitte P, Hansmann P (1991) A eukaryotic genome of 660 Kb: electrophoretic karyotype of nucleomorph and cell nucleus of the cryptomonad alga, Pyrenomonas salina. Nucleic Acids Res 19:1779–1781

    Article  PubMed  CAS  Google Scholar 

  • Gagat P, Mackiewicz P, Bodył A (2013) Secondary endosymbioses. In: Löffelhardt W (ed) Endosymbiosis. Springer, Vienna, pp xx–yy

    Google Scholar 

  • Gibbs SP (1978) Chloroplasts of euglena may have evolved from symbiotic green-algae. Can J Bot 56:2883–2889

    Article  Google Scholar 

  • Gilson PR, McFadden GI (2002) Jam packed genomes – a preliminary, comparative analysis of nucleomorphs. Genetica 115:13–28

    Article  PubMed  CAS  Google Scholar 

  • Gilson PR, Su V, Slamovits CH, Reith ME, Keeling PJ, McFadden GI (2006) Complete nucleotide sequence of the chlorarachniophyte nucleomorph: nature’s smallest nucleus. Proc Natl Acad Sci U S A 103:9566–9571

    Article  PubMed  CAS  Google Scholar 

  • Gould SB, Waller RR, McFadden GI (2008) Plastid evolution. Annu Rev Plant Biol 59:491–517

    Article  PubMed  CAS  Google Scholar 

  • Gray MW, Doolittle WF (1982) Has the endosymbiont hypothesis been proven? Microbiol Rev 46:1–42

    PubMed  CAS  Google Scholar 

  • Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283:1476–1481

    Article  PubMed  CAS  Google Scholar 

  • Gray MW, Lang BF, Burger G (2004) Mitochondria of protists. Annu Rev Genet 38:477–524

    Article  PubMed  CAS  Google Scholar 

  • Greenwood A (1974) The cryptophyta in relation to phylogeny and photosynthesis. In: Proceedings of the 8th International Congress on Electron Microscopy, vol 2, pp 566–567

    Google Scholar 

  • Hackett JD, Anderson DM, Erdner DL, Bhattacharya D (2004) Dinoflagellates: a remarkable evolutionary experiment. Am J Bot 91:1523–1534

    Article  PubMed  CAS  Google Scholar 

  • Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AGB, Roger AJ (2009) Phylogenomic analyses support the monophyly of excavata and resolve relationships among eukaryotic “supergroups”. Proc Natl Acad Sci U S A 106:3859–3864

    Article  PubMed  CAS  Google Scholar 

  • Hibberd DJ, Norris RE (1984) Cytology and ultrastructure of Chlorarachnion reptans (Chlorarachniophyta divisio nova, Chlorarachniophyceae classis nova). J Phycol 20:310–330

    Article  Google Scholar 

  • Hirakawa Y, Burki F, Keeling PJ (2012) Dual targeting of aminoacyl-tRNA synthetases to the mitochondrion and plastid in chlorarachniophytes. J Cell Sci 125(Pt 24):6176–6184

    Article  PubMed  CAS  Google Scholar 

  • Hoef-Emden K (2005) Multiple independent losses of photosynthesis and differing evolutionary rates in the genus Cryptomonas (cryptophyceae): combined phylogenetic analyses of DNA sequences of the nuclear and the nucleomorph ribosomal operons. J Mol Evol 60:183–195

    Article  PubMed  CAS  Google Scholar 

  • Hoef-Emden K, Marin B, Melkonian M (2002) Nuclear and nucleomorph SSU rDNA phylogeny in the cryptophyta and the evolution of cryptophyte diversity. J Mol Evol 55:161–179

    Article  PubMed  CAS  Google Scholar 

  • Ishida K, Cao Y, Hasegawa M, Okada N, Hara Y (1997) The origin of chlorarachniophyte plastids, as inferred from phylogenetic comparisons of amino acid sequences of EF-Tu. J Mol Evol 45:682–687

    Article  PubMed  CAS  Google Scholar 

  • Ishida K, Green BR, Cavalier-Smith T (1999) Diversification of a chimaeric algal group, the chlorarachniophytes: phylogeny of nuclear and nucleomorph small-subunit rRNA genes. Mol Biol Evol 16:321–331

    Article  CAS  Google Scholar 

  • Ishida K, Endo H, Koike S (2011a) Partenskyella glossopodia (Chlorarachniophyceae) possesses a nucleomorph genome of approximately 1 Mbp. Phycol Res 59:120–122

    Article  CAS  Google Scholar 

  • Ishida K, Yabuki A, Ota S (2011b) Amorphochlora amoebiformis gen. et comb. nov. (Chlorarachniophyceae). Phycol Res 59:52–53

    Article  Google Scholar 

  • Katinka MD, Duprat S, Cornillot E, Metenier G, Thomarat F, Prensier G, Barbe V, Peyretaillade E, Brottier P, Wincker P, Delbac F, El Alaoui H, Peyret P, Saurin W, Gouy M, Weissenbach J, Vivares CP (2001) Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414:450–453

    Article  PubMed  CAS  Google Scholar 

  • Khan H, Parks N, Kozera C, Curtis BA, Parsons BJ, Bowman S, Archibald JM (2007) Plastid genome sequence of the cryptophyte alga Rhodomonas salina CCMP1319: lateral transfer of putative DNA replication machinery and a test of chromist plastid phylogeny. Mol Biol Evol 24:1832–1842

    Article  PubMed  CAS  Google Scholar 

  • Lane CE, Archibald JM (2006) Novel nucleomorph genome architecture in the cryptomonad genus Hemiselmis. J Eukaryot Microbiol 53:515–521

    Article  PubMed  CAS  Google Scholar 

  • Lane CE, Archibald JM (2008) New marine members of the genus Hemiselmis (Cryptomonadales, Cryptophyceae). J Phycol 44:439–450

    Article  CAS  Google Scholar 

  • Lane CE, Khan H, MacKinnon M, Fong A, Theophilou S, Archibald JM (2006) Insight into the diversity and evolution of the cryptomonad nucleomorph genome. Mol Biol Evol 23:856–865

    Article  PubMed  CAS  Google Scholar 

  • Lane CE, van den Heuvel K, Kozera C, Curtis BA, Parsons BJ, Bowman S, Archibald JM (2007) Nucleomorph genome of Hemiselmis andersenii reveals complete intron loss and compaction as a driver of protein structure and function. Proc Natl Acad Sci U S A 104:19908–19913

    Article  PubMed  CAS  Google Scholar 

  • Löffelhardt W (2013) The single primary endosymbiotic event. In: Löffelhardt W (ed) Endosymbiosis. Springer, Vienna, pp xx–yy

    Google Scholar 

  • Ludwig M, Gibbs SP (1985) DNA is present in the nucleomorph of cryptomonads – further evidence that the chloroplast evolved from a eukaryotic endosymbiont. Protoplasma 127:9–20

    Article  Google Scholar 

  • Martin W (2003) The smoking gun of gene transfer. Nat Genet 33:442

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Herrmann RG (1998) Gene transfer from organelles to the nucleus: how much, what happens, and why? Plant Physiol 118:9–17

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Schnarrenberger C (1997) The evolution of the Calvin cycle from prokaryotic to eukaryotic chromosomes: a case study of functional redundancy in ancient pathways through endosymbiosis. Curr Genet 32:1–18

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Mustafa AZ, Henze K, Schnarrenberger C (1996) Higher-plant chloroplast and cytosolic fructose-1,6-bisphosphatase isoenzymes: origins via duplication rather than prokaryote-eukaryote divergence. Plant Mol Biol 32:485–491

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci U S A 99:12246–12251

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki M, Misumi O, Shin-I T, Maruyama S, Takahara M, Miyagishima SY, Mori T, Nishida K, Yagisawa F, Nishida K, Yoshida Y, Nishimura Y, Nakao S, Kobayashi T, Momoyama Y, Higashiyama T, Minoda A, Sano M, Nomoto H, Oishi K, Hayashi H, Ohta F, Nishizaka S, Haga S, Miura S, Morishita T, Kabeya Y, Terasawa K, Suzuki Y, Ishii Y, Asakawa S, Takano H, Ohta N, Kuroiwa H, Tanaka K, Shimizu N, Sugano S, Sato N, Nozaki H, Ogasawara N, Kohara Y, Kuroiwa T (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657

    Article  PubMed  CAS  Google Scholar 

  • McFadden GI, Gilson PR, Hill DRA (1994) Goniomonas – ribosomal RNA sequences indicate that this phagotrophic flagellate is a close relative of the host component of cryptomonads. Eur J Phycol 29:29–32

    Article  Google Scholar 

  • McFadden GI, Gilson PR, Waller RF (1995) Molecular phylogeny of chlorarachniophytes based on plastid ribosomal RNA and rbcL sequences. Arch Protistenkd 145:231–239

    Article  Google Scholar 

  • Moore CE, Archibald JM (2009) Nucleomorph genomes. Annu Rev Genet 43:251–264

    Article  PubMed  CAS  Google Scholar 

  • Moran NA (1996) Accelerated evolution and Muller’s rachet in endosymbiotic bacteria. Proc Natl Acad Sci U S A 93:2873–2878

    Article  PubMed  CAS  Google Scholar 

  • Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42:165–190

    Article  PubMed  CAS  Google Scholar 

  • Moreira D, Lopezarchilla AI, Amils R, Marin I (1994) Characterization of 2 New thermoacidophilic microalgae – genome organization and comparison with Galdieria sulphuraria. FEMS Microbiol Lett 122:109–114

    Article  CAS  Google Scholar 

  • Muravenko OV, Selyakh IO, Kononenko NV, Stadnichuk IN (2001) Chromosome numbers and nuclear DNA contents in the red microalgae Cyanidium caldarium and three Galdieria species. Eur J Phycol 36:227–232

    Article  Google Scholar 

  • Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar HE, Moran NA, Hattori M (2006) The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science 314:267

    Article  PubMed  CAS  Google Scholar 

  • Ota S, Ueda K, Ishida K (2007) Norrisiella sphaerica gen. et sp nov., a new coccoid chlorarachniophyte from Baja California, Mexico. J Plant Res 120:661–670

    Article  PubMed  Google Scholar 

  • Patron NJ, Inagaki Y, Keeling PJ (2007) Multiple gene phylogenies support the monophyly of cryptomonad and haptophyte host lineages. Curr Biol 17:887–891

    Article  PubMed  CAS  Google Scholar 

  • Phipps KD, Donaher NA, Lane CE, Archibald JM (2008) Nucleomorph karyotype diversity in the freshwater cryptophyte genus Cryptomonas. J Phycol 44:11–14

    Article  CAS  Google Scholar 

  • Podlevsky JD, Bley CJ, Omana RV, Qi XD, Chen JJL (2008) The telomerase database. Nucleic Acids Res 36:D339–D343

    Article  PubMed  CAS  Google Scholar 

  • Rensing SA, Goddemeier M, Hofmann CJB, Maier UG (1994) The presence of a nucleomorph hsp70 gene is a common feature of cryptophyta and chlorarachniophyta. Curr Genet 26:451–455

    Article  PubMed  CAS  Google Scholar 

  • Reyes-Prieto A, Weber APM, Bhattacharya D (2007) The origin and establishment of the plastid in algae and plants. Annu Rev Genet 41:147–168

    Article  PubMed  CAS  Google Scholar 

  • Saccone C, Gissi C, Reyes A, Larizza A, Sbisa E, Pesole G (2002) Mitochondrial DNA in metazoa: degree of freedom in a frozen event. Gene 286:3–12

    Article  PubMed  CAS  Google Scholar 

  • Shalchian-Tabrizi K, Brate J, Logares R, Klaveness D, Berney C, Jakobsen KS (2008) Diversification of unicellular eukaryotes: cryptomonad colonizations of marine and fresh waters inferred from revised 18S rRNA phylogeny. Environ Microbiol 10:2635–2644

    Article  PubMed  CAS  Google Scholar 

  • Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H (2000) Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407:81–86

    Article  PubMed  CAS  Google Scholar 

  • Silver TD, Koike S, Yabuki A, Kofuji R, Archibald JM, Ishida KI (2007) Phylogeny and nucleomorph karyotype diversity of chlorarachniophyte algae. J Eukaryot Microbiol 54:403–410

    Article  PubMed  CAS  Google Scholar 

  • Silver TD, Moore CE, Archibald JM (2010) Nucleomorph ribosomal DNA and telomere dynamics in chlorarachniophyte algae. J Eukaryot Microbiol 57:453–459

    Article  PubMed  CAS  Google Scholar 

  • Smith DR (2009) Unparalleled GC content in the plastid DNA of Selaginella. Plant Mol Biol 71:627–639

    Article  PubMed  CAS  Google Scholar 

  • Tanifuji G (2011) Reductive genome evolution in nucleomorphs (in Japanese). Jpn J Protozool 44:89–102

    Google Scholar 

  • Tanifuji G, Onodera NT, Hara Y (2010) Nucleomorph genome diversity and its phylogenetic implications in cryptomonad algae. Phycol Res 58:230–237

    Article  CAS  Google Scholar 

  • Tanifuji G, Onodera NT, Wheeler TJ, Dlutek M, Donaher N, Archibald JM (2011) Complete nucleomorph genome sequence of the nonphotosynthetic alga Cryptomonas paramecium reveals a core nucleomorph gene set. Genome Biol Evol 3:44–54

    Article  PubMed  CAS  Google Scholar 

  • van Dooren GG, Schwartzbach SD, Osafune T, McFadden GI (2001) Translocation of proteins across the multiple membranes of complex plastids. Biochim Biophys Acta 1541:34–53

    Article  PubMed  Google Scholar 

  • Whatley JM, Whatley FR (1981) Chloroplast evolution. New Phytol 87:233–247

    Article  CAS  Google Scholar 

  • Worden AZ, Lee JH, Mock T, Rouze P, Simmons MP, Aerts AL, Allen AE, Cuvelier ML, Derelle E, Everett MV, Foulon E, Grimwood J, Gundlach H, Henrissat B, Napoli C, McDonald SM, Parker MS, Rombauts S, Salamov A, Von Dassow P, Badger JH, Coutinho PM, Demir E, Dubchak I, Gentemann C, Eikrem W, Gready JE, John U, Lanier W, Lindquist EA, Lucas S, Mayer KFX, Moreau H, Not F, Otillar R, Panaud O, Pangilinan J, Paulsen I, Piegu B, Poliakov A, Robbens S, Schmutz J, Toulza E, Wyss T, Zelensky A, Zhou K, Armbrust EV, Bhattacharya D, Goodenough UW, Van de Peer Y, Grigoriev IV (2009) Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science 324:268–272

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Shuhei Ota for providing light micrographs and TEM pictures of chlorarachniophytes and Christa Moore for comments on an earlier version of this manuscript. Nucleomorph genome sequencing projects in the Archibald Laboratory are supported by an operating grant from the Canadian Institutes of Health Research (CIHR) Regional Partnership Program, together with the Nova Scotia Health Research Foundation. GT is supported by a Tula Foundation postdoctoral fellowship from the Centre for Comparative Genomics and Evolutionary Bioinformatics at Dalhousie University. JMA is a Fellow of the Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, and holder of a New Investigator Award from the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Archibald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Tanifuji, G., Archibald, J.M. (2014). Nucleomorph Comparative Genomics. In: Löffelhardt, W. (eds) Endosymbiosis. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1303-5_11

Download citation

Publish with us

Policies and ethics