Skip to main content

Vaccine Development

  • Chapter
  • First Online:
Molecular Parasitology
  • 1527 Accesses

Abstract

Parasitic protozoa exact an enormous toll on human life, with immediate medical and economic consequences. The heaviest burden of these diseases is borne by the poor, and it is recognised that they contribute to global poverty. Although most infections are treatable with drugs, these are often expensive and toxic and require multiple doses and induction of resistance problematic. Vaccines are recognised as highly cost-effective public health tools and are the only means by which global eradication of any disease has been achieved. Despite the urgent need, no vaccine is available against any human parasite. Reasons for this include the relative complexity and different species of the causative organisms compared with most viruses and bacteria; their cryptic habitats, often intracellular and inaccessible to immune mediators; a lack of understanding of the mechanisms conferring immune protection; and the lengthy and costly process of developing any therapeutic, particularly when the target population includes pregnant women, babies and young children.

This chapter outlines some of the promising avenues for vaccine development against the most widespread and serious pathogenic protozoa, Trichomonas, Leishmania and Plasmodium. Whatever the species, there are three main vaccine types aimed at inducing protective immunity. These are whole cell, DNA and subunit vaccines, and we describe some of the candidates currently being assessed as well as the challenges facing researchers in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alderete JF, Provenzano D, Lehker MW (1995) Iron mediates Trichomonas vaginalis resistance to complement lysis. Microb Pathog 19:93–103

    Article  CAS  PubMed  Google Scholar 

  • Alvar J, Canavate C, Molina R, Moreno J, Nieto J (2004) Canine leishmaniasis. Adv Parasitol 57:1–88

    Article  PubMed  Google Scholar 

  • Alvar J et al (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7:e35671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Wabel MA, Tonui WK, Cui L, Martin SK, Titus RG (2007) Protection of susceptible BALB/c mice from challenge with Leishmania major by nucleoside hydrolase, a soluble exo-antigen of Leishmania. Am J Trop Med Hyg 77:1060–1065

    CAS  PubMed  Google Scholar 

  • Bakshi S, Imoukhuede EB (2010) Malaria Vectored Vaccines Consortium (MVVC). Hum Vaccin 6:433–434

    Article  PubMed  Google Scholar 

  • Bastida-Corcuera FD et al (2013) Antibodies to Trichomonas vaginalis surface glycolipid. Sex Transm Infect 89:467–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basu R, Roy S, Walden P (2007) HLA class I-restricted T cell epitopes of the kinetoplastid membrane protein-11 presented by Leishmania donovani-infected human macrophages. J Infect Dis 195:1373–1380

    Article  CAS  PubMed  Google Scholar 

  • Bell BA et al (2009) Process development for the production of an E. coli produced clinical grade recombinant malaria vaccine for Plasmodium vivax. Vaccine 27:1448–1453

    Article  CAS  PubMed  Google Scholar 

  • Benhnini F et al (2009) Comparative evaluation of two vaccine candidates against experimental leishmaniasis due to Leishmania major infection in four inbred mouse strains. Clin Vaccine Immunol 16:1529–1537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergmann-Leitner ES et al (2010) Immunization with pre-erythrocytic antigen CelTOS from Plasmodium falciparum elicits cross-species protection against heterologous challenge with Plasmodium berghei. PLoS One 5:e12294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhaumik S, Basu R, Sen S, Naskar K, Roy S (2009) KMP-11 DNA immunization significantly protects against L. donovani infection but requires exogenous IL-12 as an adjuvant for comparable protection against L. major. Vaccine 27:1306–1316

    Article  CAS  PubMed  Google Scholar 

  • Biswas S et al (2014) Assessment of humoral immune responses to blood-stage malaria antigens following ChAd63-MVA immunization, controlled human malaria infection and natural exposure. PLoS One 9:e107903

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Campo JJ et al (2015) RTS, S vaccination is associated with serologic evidence of decreased exposure to Plasmodium falciparum liver- and blood-stage parasites. Mol Cell Proteomics 14:519–531

    Article  CAS  PubMed  Google Scholar 

  • Carlton JM et al (2007) Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 315:207–212

    Article  PubMed  PubMed Central  Google Scholar 

  • Carlton JM et al (2008) Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature 455:757–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakravarty J et al (2011) A clinical trial to evaluate the safety and immunogenicity of the LEISH-F1 + MPL-SE vaccine for use in the prevention of visceral leishmaniasis. Vaccine 29:3531–3537

    Article  CAS  PubMed  Google Scholar 

  • Chenik M et al (2006) Approaches for the identification of potential excreted/secreted proteins of Leishmania major parasites. Parasitology 132:493–509

    Article  CAS  PubMed  Google Scholar 

  • Cohen S, McGregor IA, Carrington SC (1961) Gamma-globulin and acquired immunity to human malaria. Nature 192:733–737

    Article  CAS  PubMed  Google Scholar 

  • Cohen J, Nussenzweig V, Nussenzweig R, Vekemans J, Leach A (2010) From the circumsporozoite protein to the RTS, S/AS candidate vaccine. Hum Vaccin 6:90–96

    Article  CAS  PubMed  Google Scholar 

  • Connell ND, Medina-Acosta E, McMaster WR, Bloom BR, Russell DG (1993) Effective immunization against cutaneous leishmaniasis with recombinant bacille Calmette-Guerin expressing the Leishmania surface proteinase gp63. Proc Natl Acad Sci U S A 90:11473–11477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbeil LB, Munson L, Campero C, BonDurant RH (2001) Bovine trichomoniasis as a model for development of vaccines against sexually-transmitted disease. Am J Reprod Immunol 45:310–319

    Article  CAS  PubMed  Google Scholar 

  • Croft SL, Sundar S, Fairlamb AH (2006) Drug resistance in leishmaniasis. Clin Microbiol Rev 19:111–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das S et al (2014) Modular multiantigen T cell epitope-enriched DNA vaccine against human leishmaniasis. Sci Transl Med 6:234ra56

    Article  PubMed  CAS  Google Scholar 

  • de Barra E et al (2014) A phase Ia study to assess the safety and immunogenicity of new malaria vaccine candidates ChAd63 CS administered alone and with MVA CS. PLoS One 9:e115161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doolan DL, Apte SH, Proietti C (2014) Genome-based vaccine design: the promise for malaria and other infectious diseases. Int J Parasitol 44:901–913

    Article  CAS  PubMed  Google Scholar 

  • Douglas AD et al (2011) The blood-stage malaria antigen PfRH5 is susceptible to vaccine-inducible cross-strain neutralizing antibody. Nat Commun 2:601

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Douglas AD et al (2015) A PfRH5-based vaccine is efficacious against heterologous strain blood-stage plasmodium falciparum infection in aotus monkeys. Cell Host Microbe 17:130–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Draper SJ et al (2008) Effective induction of high-titer antibodies by viral vector vaccines. Nat Med 14:819–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Draper SJ et al (2009) Recombinant viral vaccines expressing merozoite surface protein-1 induce antibody- and T cell-mediated multistage protection against malaria. Cell Host Microbe 5:95–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Druilhe P et al (2005) A malaria vaccine that elicits in humans antibodies able to kill Plasmodium falciparum. PLoS Med 2:e344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Einstein MH et al (2014) Comparison of long-term immunogenicity and safety of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine and HPV-6/11/16/18 vaccine in healthy women aged 18–45 years: end-of-study analysis of a Phase III randomized trial. Hum Vaccin Immunother 10:3435–3445

    Article  PubMed  PubMed Central  Google Scholar 

  • El Sahly HM et al (2010) Safety and immunogenicity of a recombinant nonglycosylated erythrocyte binding antigen 175 Region II malaria vaccine in healthy adults living in an area where malaria is not endemic. Clin Vaccine Immunol 17:1552–1559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ellis RD, Sagara I, Doumbo O, Wu Y (2010) Blood stage vaccines for Plasmodium falciparum: current status and the way forward. Hum Vaccin 6:627–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foquet L et al (2014) Vaccine-induced monoclonal antibodies targeting circumsporozoite protein prevent Plasmodium falciparum infection. J Clin Invest 124:140–144

    Article  CAS  PubMed  Google Scholar 

  • Gardner MJ et al (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Zhang WW, Matlashewski G (2001) Immunization with A2 protein results in a mixed Th1/Th2 and a humoral response which protects mice against Leishmania donovani infections. Vaccine 20:59–66

    Article  CAS  PubMed  Google Scholar 

  • Goto Y, Bogatzki LY, Bertholet S, Coler RN, Reed SG (2007) Protective immunization against visceral leishmaniasis using Leishmania sterol 24-c-methyltransferase formulated in adjuvant. Vaccine 25:7450–7458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gwadz RW, Carter R, Green I (1979) Gamete vaccines and transmission-blocking immunity in malaria. Bull World Health Organ 57(Suppl 1):175–180

    PubMed  PubMed Central  Google Scholar 

  • Hall BF, Fauci AS (2009) Malaria control, elimination, and eradication: the role of the evolving biomedical research agenda. J Infect Dis 200:1639–1643

    Article  PubMed  Google Scholar 

  • Handman E, Symons FM, Baldwin TM, Curtis JM, Scheerlinck JP (1995) Protective vaccination with promastigote surface antigen 2 from Leishmania major is mediated by a TH1 type of immune response. Infect Immun 63:4261–4267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Healer J et al (2013) Vaccination with conserved regions of erythrocyte-binding antigens induces neutralizing antibodies against multiple strains of Plasmodium falciparum. PLoS One 8:e72504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez HM, Figueredo M, Garrido N, Sanchez L, Sarracent J (2005) Intranasal immunisation with a 62 kDa proteinase combined with cholera toxin or CpG adjuvant protects against Trichomonas vaginalis genital tract infections in mice. Int J Parasitol 35:1333–1337

    Article  CAS  PubMed  Google Scholar 

  • Hirt RP et al (2011) Trichomonas vaginalis pathobiology new insights from the genome sequence. Adv Parasitol 77:87–140

    Article  PubMed  Google Scholar 

  • Hodgson SH et al (2014) Combining viral vectored and protein-in-adjuvant vaccines against the blood-stage malaria antigen AMA1: report on a phase 1a clinical trial. Mol Ther 22:2142–2154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgson SH et al (2015) Evaluation of the efficacy of ChAd63-MVA vectored vaccines expressing circumsporozoite protein and ME-TRAP against controlled human malaria infection in malaria-naive individuals. J Infect Dis 211:1076–1086

    Article  PubMed  Google Scholar 

  • Hoffman SL et al (2002) Protection of humans against malaria by immunization with radiation-attenuated Plasmodium falciparum sporozoites. J Infect Dis 185:1155–1164

    Article  PubMed  Google Scholar 

  • Hoffman SL et al (2010) Development of a metabolically active, non-replicating sporozoite vaccine to prevent Plasmodium falciparum malaria. Hum Vaccin 6:97–106

    Article  CAS  PubMed  Google Scholar 

  • Horii T et al (2010) Evidences of protection against blood-stage infection of Plasmodium falciparum by the novel protein vaccine SE36. Parasitol Int 59:380–386

    Article  CAS  PubMed  Google Scholar 

  • Ibison F et al (2012) Lack of avidity maturation of merozoite antigen-specific antibodies with increasing exposure to Plasmodium falciparum amongst children and adults exposed to endemic malaria in Kenya. PLoS One 7:e52939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Illingworth J et al (2013) Chronic exposure to Plasmodium falciparum is associated with phenotypic evidence of B and T cell exhaustion. J Immunol 190:1038–1047

    Article  CAS  PubMed  Google Scholar 

  • Jain K, Jain NK (2015) Vaccines for visceral leishmaniasis: a review. J Immunol Methods. doi:10.1016/j.jim.2015.03.017

    PubMed  Google Scholar 

  • Kaslow DC et al (1988) A vaccine candidate from the sexual stage of human malaria that contains EGF-like domains. Nature 333:74–76

    Article  CAS  PubMed  Google Scholar 

  • Kimani D et al (2014) Translating the immunogenicity of prime-boost immunization with ChAd63 and MVA ME-TRAP from malaria naive to malaria-endemic populations. Mol Ther 22:1992–2003

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Engwerda C (2014) Vaccines to prevent leishmaniasis. Clin Transl Immunol 3:e13

    Article  CAS  Google Scholar 

  • Kumar R et al (2010) Evaluation of ex vivo human immune response against candidate antigens for a visceral leishmaniasis vaccine. Am J Trop Med Hyg 82:808–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labaied M et al (2007) Plasmodium yoelii sporozoites with simultaneous deletion of P52 and P36 are completely attenuated and confer sterile immunity against infection. Infect Immun 75:3758–3768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehker MW, Alderete JF (1992) Iron regulates growth of Trichomonas vaginalis and the expression of immunogenic trichomonad proteins. Mol Microbiol 6:123–132

    Article  CAS  PubMed  Google Scholar 

  • Llanos-Cuentas A et al (2010) A clinical trial to evaluate the safety and immunogenicity of the LEISH-F1 + MPL-SE vaccine when used in combination with sodium stibogluconate for the treatment of mucosal leishmaniasis. Vaccine 28:7427–7435

    Article  CAS  PubMed  Google Scholar 

  • Lopaticki S et al (2011) Reticulocyte and erythrocyte binding-like proteins function cooperatively in invasion of human erythrocytes by malaria parasites. Infect Immun 79:1107–1117

    Article  CAS  PubMed  Google Scholar 

  • Luke TC, Hoffman SL (2003) Rationale and plans for developing a non-replicating, metabolically active, radiation-attenuated Plasmodium falciparum sporozoite vaccine. J Exp Biol 206:3803–3808

    Article  PubMed  Google Scholar 

  • Lusingu JP et al (2009) Satisfactory safety and immunogenicity of MSP3 malaria vaccine candidate in Tanzanian children aged 12–24 months. Malar J 8:163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marzio G et al (2007) A replication-competent adenovirus assay for E1-deleted Ad35 vectors produced in PER.C6 cells. Vaccine 25:2228–2237

    Article  CAS  PubMed  Google Scholar 

  • McCall LI, Zhang WW, Ranasinghe S, Matlashewski G (2013) Leishmanization revisited: immunization with a naturally attenuated cutaneous Leishmania donovani isolate from Sri Lanka protects against visceral leishmaniasis. Vaccine 31:1420–1425

    Article  PubMed  Google Scholar 

  • McConkey SJ et al (2003) Enhanced T-cell immunogenicity of plasmid DNA vaccines boosted by recombinant modified vaccinia virus Ankara in humans. Nat Med 9:729–735

    Article  CAS  PubMed  Google Scholar 

  • Mendis K, Sina BJ, Marchesini P, Carter R (2001) The neglected burden of Plasmodium vivax malaria. Am J Trop Med Hyg 64:97–106

    CAS  PubMed  Google Scholar 

  • Michon P, Fraser T, Adams JH (2000) Naturally acquired and vaccine-elicited antibodies block erythrocyte cytoadherence of the Plasmodium vivax Duffy binding protein. Infect Immun 68:3164–3171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikolajczak SA et al (2014) A next-generation genetically attenuated Plasmodium falciparum parasite created by triple gene deletion. Mol Ther 22:1707–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mordmuller B et al (2010) Safety and immunogenicity of the malaria vaccine candidate GMZ2 in malaria-exposed, adult individuals from Lambarene. Gabon Vaccine 28:6698–6703

    Article  PubMed  CAS  Google Scholar 

  • Nascimento E et al (2010) A clinical trial to evaluate the safety and immunogenicity of the LEISH-F1 + MPL-SE vaccine when used in combination with meglumine antimoniate for the treatment of cutaneous leishmaniasis. Vaccine 28:6581–6587

    Article  CAS  PubMed  Google Scholar 

  • Ndungu FM et al (2012) A statistical interaction between circumsporozoite protein-specific T cell and antibody responses and risk of clinical malaria episodes following vaccination with RTS, S/AS01E. PLoS One 7:e52870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nebie I et al (2009) Humoral and cell-mediated immunity to MSP3 peptides in adults immunized with MSP3 in malaria endemic area. Burkina Faso Parasite Immunol 31:474–480

    Article  CAS  PubMed  Google Scholar 

  • Noulin F, Borlon C, Van Den Abbeele J, D'Alessandro U, Erhart A (2013) 1912–2012: a century of research on Plasmodium vivax in vitro culture. Trends Parasitol 29:286–294

    Article  PubMed  Google Scholar 

  • Nussenzweig V, Nussenzweig RS (1989) Rationale for the development of an engineered sporozoite malaria vaccine. Adv Immunol 45:283–334

    Article  CAS  PubMed  Google Scholar 

  • Ogwang C et al (2013) Safety and immunogenicity of heterologous prime-boost immunisation with Plasmodium falciparum malaria candidate vaccines, ChAd63 ME-TRAP and MVA ME-TRAP, in healthy Gambian and Kenyan adults. PLoS One 8, e57726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olugbile S et al (2011) Malaria vaccine candidate: design of a multivalent subunit alpha-helical coiled coil poly-epitope. Vaccine 29:7090–7099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owens S (2015) Malaria and the millennium development goals. Arch Dis Child 100(Suppl 1):S53–S56

    Article  PubMed  Google Scholar 

  • Pain A et al (2008) The genome of the simian and human malaria parasite Plasmodium knowlesi. Nature 455:799–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson RD, Sousa AQ (1996) Clinical spectrum of Leishmaniasis. Clin Infect Dis 22:1–13

    Article  CAS  PubMed  Google Scholar 

  • Peek LJ, Brandau DT, Jones LS, Joshi SB, Middaugh CR (2006) A systematic approach to stabilizing EBA-175 RII-NG for use as a malaria vaccine. Vaccine 24:5839–5851

    Article  CAS  PubMed  Google Scholar 

  • Ploemen IH et al (2012) Plasmodium berghei Deltap52&p36 parasites develop independent of a parasitophorous vacuole membrane in Huh-7 liver cells. PLoS One 7:e50772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plowe CV, Alonso P, Hoffman SL (2009) The potential role of vaccines in the elimination of falciparum malaria and the eventual eradication of malaria. J Infect Dis 200:1646–1649

    Article  PubMed  Google Scholar 

  • Price RN, Douglas NM, Anstey NM (2009) New developments in Plasmodium vivax malaria: severe disease and the rise of chloroquine resistance. Curr Opin Infect Dis 22:430–435

    Article  PubMed  Google Scholar 

  • Rafati S, Zahedifard F, Nazgouee F (2006) Prime-boost vaccination using cysteine proteinases type I and II of Leishmania infantum confers protective immunity in murine visceral leishmaniasis. Vaccine 24:2169–2175

    Article  CAS  PubMed  Google Scholar 

  • Rappuoli R, Miller HI, Falkow S (2002) Medicine. The intangible value of vaccination. Science 297:937–939

    Article  CAS  PubMed  Google Scholar 

  • Reithinger R et al (2007) Cutaneous leishmaniasis. Lancet Infect Dis 7:581–596

    Article  PubMed  Google Scholar 

  • Remarque EJ, Faber BW, Kocken CH, Thomas AW (2008) A diversity-covering approach to immunization with Plasmodium falciparum apical membrane antigen 1 induces broader allelic recognition and growth inhibition responses in rabbits. Infect Immun 76:2660–2670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reyes-Sandoval A et al (2010) Prime-boost immunization with adenoviral and modified vaccinia virus Ankara vectors enhances the durability and polyfunctionality of protective malaria CD8+ T-cell responses. Infect Immun 78:145–153

    Article  CAS  PubMed  Google Scholar 

  • Riede O et al (2015) Preclinical safety and tolerability of a repeatedly administered human leishmaniasis DNA vaccine. Gene Ther 22:62–35

    Google Scholar 

  • Roberts L, Enserink M (2007) Malaria. Did they really say … eradication? Science 318:1544–1545

    Article  CAS  PubMed  Google Scholar 

  • Rogerson SJ, Carter R (2008) Severe vivax malaria: newly recognised or rediscovered. PLoS Med 5:e136

    Article  PubMed  PubMed Central  Google Scholar 

  • RTS SCTP (2014) Efficacy and safety of the RTS, S/AS01 malaria vaccine during 18 months after vaccination: a phase 3 randomized, controlled trial in children and young infants at 11 African sites. PLoS Med 11:e1001685

    Article  Google Scholar 

  • RTS, S.C.T.P (2015) Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. The Lancet 60 721–728

    Google Scholar 

  • Sabchaeron A et al (1991) Parasitologic and clinical human response to immunoglobulin administration in falciparum malaria. Am J Trop Med Hyg 45:297–308

    Google Scholar 

  • Sacks D, Kamhawi S (2001) Molecular aspects of parasite-vector and vector-host interactions in leishmaniasis. Annu Rev Microbiol 55:453–483

    Article  CAS  PubMed  Google Scholar 

  • Schiller JT, Lowy DR (2006) Prospects for cervical cancer prevention by human papillomavirus vaccination. Cancer Res 66:10229–10232

    Article  CAS  PubMed  Google Scholar 

  • Sedegah M et al (2014) Sterile immunity to malaria after DNA prime/adenovirus boost immunization is associated with effector memory CD8 + T cells targeting AMA1 class I epitopes. PLoS One 9:e106241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seder RA et al (2013) Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine. Science 341:1359–1365

    Article  CAS  PubMed  Google Scholar 

  • Sehgal R, Goyal K, Sehgal A (2012) Trichomoniasis and lactoferrin: future prospects. Infect Dis Obstet Gynecol 2012:536037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shott JP et al (2008) Adenovirus 5 and 35 vectors expressing Plasmodium falciparum circumsporozoite surface protein elicit potent antigen-specific cellular IFN-gamma and antibody responses in mice. Vaccine 26:2818–2823

    Article  CAS  PubMed  Google Scholar 

  • Sinden RE, Carter R, Drakeley C, Leroy D (2012) The biology of sexual development of Plasmodium: the design and implementation of transmission-blocking strategies. Malar J 11:70

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh OP, Stober CB, Singh AK, Blackwell JM, Sundar S (2012) Cytokine responses to novel antigens in an Indian population living in an area endemic for visceral leishmaniasis. PLoS Negl Trop Dis 6:e1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirima SB et al (2007) Safety and immunogenicity of the Plasmodium falciparum merozoite surface protein-3 long synthetic peptide (MSP3-LSP) malaria vaccine in healthy, semi-immune adult males in Burkina Faso, West Africa. Vaccine 25:2723–2732

    Article  CAS  PubMed  Google Scholar 

  • Sirima SB et al (2009) Safety and immunogenicity of the malaria vaccine candidate MSP3 long synthetic peptide in 12–24 months-old Burkinabe children. PLoS One 4:e7549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smith J, Garber GE (2014) Current status and prospects for development of a vaccine against Trichomonas vaginalis infections. Vaccine 32:1588–1594

    Article  CAS  PubMed  Google Scholar 

  • Soper D (2004) Trichomoniasis: under control or undercontrolled? Am J Obstet Gynecol 190:281–290

    Article  PubMed  Google Scholar 

  • Spring M et al (2013) First-in-human evaluation of genetically attenuated Plasmodium falciparum sporozoites administered by bite of Anopheles mosquitoes to adult volunteers. Vaccine 31:4975–4983

    Article  PubMed  Google Scholar 

  • Stager S, Smith DF, Kaye PM (2000) Immunization with a recombinant stage-regulated surface protein from Leishmania donovani induces protection against visceral leishmaniasis. J Immunol 165:7064–7071

    Article  CAS  PubMed  Google Scholar 

  • Stark JR et al (2009) Prospective study of Trichomonas vaginalis infection and prostate cancer incidence and mortality: Physicians' Health Study. J Natl Cancer Inst 101:1406–1411

    Article  PubMed  PubMed Central  Google Scholar 

  • Stoute JA et al (1997) A preliminary evaluation of a recombinant circumsporozoite protein vaccine against Plasmodium falciparum. N Engl J Med 336:86–91

    Article  CAS  PubMed  Google Scholar 

  • Sundar S, Singh B (2014) Identifying vaccine targets for anti-leishmanial vaccine development. Expert Rev Vaccines 13:489–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theisen M et al (2004) A Plasmodium falciparum GLURP-MSP3 chimeric protein; expression in Lactococcus lactis, immunogenicity and induction of biologically active antibodies. Vaccine 22:1188–1198

    Article  CAS  PubMed  Google Scholar 

  • van Schaijk BC et al (2014) A genetically attenuated malaria vaccine candidate based on P. falciparum b9/slarp gene-deficient sporozoites. Elife 3:e03582

    Google Scholar 

  • Velez ID et al (2009) Safety and immunogenicity of a defined vaccine for the prevention of cutaneous leishmaniasis. Vaccine 28:329–337

    Article  CAS  PubMed  Google Scholar 

  • Weinberg ED (1974) Iron and susceptibility to infectious disease. Science 184:952–956

    Article  CAS  PubMed  Google Scholar 

  • Williams AR et al (2012) Enhancing blockade of Plasmodium falciparum erythrocyte invasion: assessing combinations of antibodies against PfRH5 and other merozoite antigens. PLoS Pathog 8:e1002991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yazdani SS, Shakri AR, Mukherjee P, Baniwal SK, Chitnis CE (2004) Evaluation of immune responses elicited in mice against a recombinant malaria vaccine based on Plasmodium vivax Duffy binding protein. Vaccine 22:3727–3737

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan F. Cowman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Wien

About this chapter

Cite this chapter

Healer, J., Cowman, A.F. (2016). Vaccine Development. In: Walochnik, J., Duchêne, M. (eds) Molecular Parasitology. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1416-2_16

Download citation

Publish with us

Policies and ethics