Skip to main content

Cryptosporidium Oocysts in Drinking Water and Recreational Water

  • Chapter
  • First Online:
Cryptosporidium: parasite and disease

Abstract

Oocysts belonging to a wide variety of species and genotypes of Cryptosporidium are common in livestock, wild animals, and humans. Consequently, water is frequently contaminated through direct contact with infected animals and their waste, run-off from contaminated land, or structural and engineering failures in water conveyance, storage, or treatment facilities. Oocysts are resistant to chlorine disinfection at the concentrations typically applied during drinking water treatment but properly operated treatment plants that utilize filtration usually remove oocysts from source water with high efficiency. Nevertheless, waterborne Cryptosporidium continues to be a public health concern. Outbreaks have been linked to treated drinking water, but regulations enacted over the last decade, better watershed management, and operational improvements have led to a decline in drinking water related cryptosporidiosis in some countries. However, the same period has seen a marked increase in cryptosporidiosis outbreaks caused by contamination of recreational water, particularly swimming pools. This chapter reviews recent waterborne outbreaks of cryptosporidiosis, discusses oocyst prevalence in drinking water and recreational water, examines the risk of waterborne transmission, and describes the principal methods for detecting oocysts in water, including genotyping environmental oocysts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The 20-year period without a cryptosporidiosis outbreak linked to a municipal surface water supply in the U.S. ended recently. An outbreak in Baker City, Oregon during the summer of 2013 was linked to an unfiltered surface water supply with up to 91 oocysts/L in one supply creek (www.bakercity.com; accessed Sept. 25, 2013).

  2. 2.

    The 20-year period without a cryptosporidiosis outbreak linked to a municipal surface water supply in the U.S. ended recently. An outbreak in Baker City, Oregon during the summer of 2013 was linked to an unfiltered surface water supply with up to 91 oocysts/L in one supply creek (www.bakercity.com; accessed Sept. 25, 2013).

References

  • Aboytes A, Di Giovanni GD, Abrams FA, Rheinecker C, McElroy W, Shaw N, LeChevallier MW (2004) Detection of infectious Cryptosporidium in filtered drinking water. J Am Water Works Assoc 96(9):88–98

    CAS  Google Scholar 

  • Aragón TJ, Novotny S, Enanoria W, Vugia DJ, Khalakdina A, Katz MH (2003) Endemic cryptosporidiosis and exposure to municipal tap water in persons with acquired immunodeficiency syndrome (AIDS): a case-control study. BMC Public Health 3:2

    Article  PubMed  Google Scholar 

  • Archer JR, Ball JR, Standridge JH, Greb SR, Rasmussen PW, Masterson JP, Boushon L (1995) Cryptosporidium spp. oocyst and Giardia spp. cyst occurrence, concentrations and distribution in Wisconsin waters. Wisconsin Department of Natural Resources, Publication No. WR420-95

    Google Scholar 

  • Baldursson S, Karanis P (2011) Waterborne transmission of protozoan parasites: review of worldwide outbreaks – an update 2004–2010. Water Res 45:6603–6614

    Article  PubMed  CAS  Google Scholar 

  • Beach MJ (2008) Waterborne: recreational water. In: Fayer R, Xiao L (eds) Cryptosporidium and cryptosporidiosis, 2nd edn. IWA Publishing/CRC Press, Boca Raton, pp 334–369

    Google Scholar 

  • Chalmers RM (2012) Waterborne outbreaks of cryptosporidiosis. Ann Ist Super Sanita 48:429–446

    Article  PubMed  Google Scholar 

  • Chalmers RM, Elwin K, Thomas AL, Guy EC, Mason B (2009a) Long-term Cryptosporidium typing reveals the aetiology and species-specific epidemiology of human cryptosporidiosis in England and Wales, 2000 to 2003. Euro Surveill 14:1–9

    Google Scholar 

  • Chalmers RM, Robinson G, Elwin K, Hadfield SJ, Xiao L, Ryan U, Modha D, Mallaghan C (2009b) Cryptosporidium sp. rabbit genotype, a newly identified human pathogen. Emerg Infect Dis 15:829–830

    Article  PubMed  CAS  Google Scholar 

  • Chalmers RM, Elwin K, Hadfield SJ, Robinson G (2011) Sporadic human cryptosporidiosis caused by Cryptosporidium cuniculus, United Kingdom, 2007–2008. Emerg Infect Dis 17:536–538

    Article  PubMed  Google Scholar 

  • Chappell CL, Okhuysen PC, Sterling CR, Wang C, Jakubowski W, Dupont HL (1999) Infectivity of Cryptosporidium parvum in healthy adults with pre-existing anti-C. parvum serum immunoglobulin G. Am J Trop Med Hyg 60:157–164

    PubMed  CAS  Google Scholar 

  • Chappell CL, Okhuysen PC, Langer-Curry R, Widmer G, Akiyoshi DE, Tanriverdi S, Tzipori S (2006) Cryptosporidium hominis: experimental challenge of healthy adults. Am J Trop Med Hyg 75:851–857

    PubMed  CAS  Google Scholar 

  • Clancy JL, Hargy TM (2008) Waterborne: drinking water. In: Fayer R, Xiao L (eds) Cryptosporidium and cryptosporidiosis, 2nd edn. IWA Publishing/CRC Press, Boca Raton, pp 305–333

    Google Scholar 

  • Craun GF, Calderon RL, Craun MF (2005) Outbreaks associated with recreational water in the United States. Int J Environ Health Res 15:243–262

    Article  PubMed  Google Scholar 

  • Craun MF, Craun GF, Calderon RL, Beach MJ (2006) Waterborne outbreaks reported in the United States. J Water Health 4:19–30

    Article  PubMed  Google Scholar 

  • Cryptosporidium (Scottish Water) Directions (2003) Scottish Executive. www.scotland.gov.uk/Resource/Doc/26487/0013541.pdf. Accessed June 2013

  • Di Giovanni GD, Hashemi FH, Shaw NJ, Abrams FA, LeChevallier MW, Abbaszadegan M (1999) Detection of infectious Cryptosporidium parvum oocysts in surface and filter backwash water samples by immunomagnetic separation and integrated cell culture PCR. Appl Environ Microbiol 65:3427–3432

    PubMed  Google Scholar 

  • Di Giovanni GD, Hoffman, RM, Sturbaum GD (2010). Cryptosporidium genotyping method for regulatory microscope slides. Project 4099 Report, Water Research Foundation, Denver, pp 56

    Google Scholar 

  • DiGiorgio CL, Gonzalez DA, Huitt CC (2002) Cryptosporidium and Giardia recoveries in natural waters by using Environmental Protection Agency Method 1623. Appl Environ Microbiol 68:5952–5955

    Article  PubMed  CAS  Google Scholar 

  • Drinking Water Inspectorate (DWI) (1999) UK water supply regulations (Amended) 1999. www.dwi.gov.uk

  • Drinking Water Inspectorate (DWI) (2002) Drinking water 2002. www.dwi.gov.uk

  • Drinking Water Inspectorate (DWI) (2005) Standard operating protocol for the monitoring of Cryptosporidium oocysts in treated water supplies to satisfy the Water Supply (Water Quality) regulations. U.K. Department of Environment

    Google Scholar 

  • Drinking Water Inspectorate (DWI) (2008) Drinking water 2008. www.dwi.gov.uk

  • Drinking Water Quality Regulator for Scotland (2012) Drinking water quality in Scotland 2011: annual report by the drinking water quality regulator for Scotland. p 151. http://www.dwqr.org.uk/technical/annual-report. Accessed 18 June 2013

  • Environmental Protection Agency (Ireland) (2011) EPA drinking water advice note no. 9: Cryptosporidium sampling and monitoring. Office of Environmental Enforcement

    Google Scholar 

  • Feltus DC, Giddings CW, Schneck BL, Monson T, Warshauer D, McEvoy JM (2006) Evidence supporting zoonotic transmission of Cryptosporidium spp. in Wisconsin. J Clin Microbiol 44:4303–4308

    Article  PubMed  CAS  Google Scholar 

  • Feng H, Nie W, Sheoran A, Zhang Q, Tzipori S (2006) Bile acids enhance invasiveness of Cryptosporidium spp. into cultured cells. Infect Immun 74:3342–3346

    Article  PubMed  CAS  Google Scholar 

  • Frost F, Craun G, Mihály K, György B, Calderon R, Muller T (2005) Serological responses to Cryptosporidium antigens among women using riverbank-filtered water, conventionally filtered surface water and groundwater in Hungary. J Water Health 3(1):77–82

    PubMed  Google Scholar 

  • Gennaccaro AL, McLaughlin MR, Quintero-Betancourt W, Huffman DE, Rose JB (2003) Infectious Cryptosporidium parvum oocysts in final reclaimed effluent. Appl Environ Microbiol 69:4983–4984

    Article  PubMed  CAS  Google Scholar 

  • Glaberman S, Moore JE, Lowery CJ, Chalmers RM, Sulaiman I, Elwin K, Rooney PJ, Millar BC, Dooley JS, Lal AA, Xiao L (2002) Three drinking water-associated cryptosporidiosis outbreaks, Northern Ireland. Emerg Infect Dis 8:631–633

    Article  PubMed  Google Scholar 

  • Goh S, Reacher M, Casemore DP, Verlander NQ, Charlett A, Chalmers RM, Knowles M, Pennington A, Williams J, Osborn K, Richards S (2005) Sporadic cryptosporidiosis decline after membrane filtration of public water supplies, England, 1996–2002. Emerg Infect Dis 11:251–259

    PubMed  Google Scholar 

  • Gold D, Stein B, Tzipori S (2001) The utilization of sodium taurocholate in excystation of Cryptosporidium parvum and infection of tissue culture. J Parasitol 87:997–1000

    PubMed  CAS  Google Scholar 

  • Guy RA, Payment P, Krull UJ, Horgen PA (2003) Real-time PCR for quantification of Giardia and Cryptosporidium in environmental water samples and sewage. Appl Environ Microbiol 69:5178–5185

    Article  PubMed  CAS  Google Scholar 

  • Haas CN, Crockett CS, Rose JB, Gerba CP, Fazil AM (1996) Assessing the risk posed by oocysts in drinking water. J Am Water Works Assoc 88(9):131–136

    CAS  Google Scholar 

  • Hill VR, Kahler AM, Jothikumar N, Johnson TB, Hahn D, Cromeans TL (2007) Multistate evaluation of an ultrafiltration-based procedure for simultaneous recovery of enteric microbes in 100-liter tap water samples. Appl Environ Microbiol 73:4218

    Article  PubMed  CAS  Google Scholar 

  • Hlavsa MC, Roberts VA, Anderson AR, Hill VR, Kahler AM, Orr M, Garrison LE, Hicks LA, Newton A, Hilborn ED, Wade TJ, Beach MJ, Yoder JS (2011) Surveillance for waterborne disease outbreaks and other health events associated with recreational water- United States, 2007–2008. MMWR Surveill Summ 60(ss12):1–32

    PubMed  Google Scholar 

  • Hughes S, Syed Q, Woodhouse S, Lake I, Osborn K, Chalmers RM, Hunter PR (2004) Using a geographical information system to investigate the relationship between reported cryptosporidiosis and water supply. Int J Health Geogr 3:15. doi:10.1186/1476-072X-3-15

    Article  PubMed  Google Scholar 

  • Hunter PR, Hughes S, Woodhouse S, Syed Q, Verlander NQ, Chalmers RM, Morgan K, Nichols G, Beeching N, Osborn K (2004) Case–control study of sporadic cryptosporidiosis with genotyping. Emerg Infect Dis 10:1241–1249

    Article  PubMed  Google Scholar 

  • Ionas G, Learmouth JJ, Keys EA, Brown TJ (1998) Distribution of Giardia and Cryptosporidium in natural water systems in New Zealand – a nationwide survey. Water Sci Technol 38:57–60

    Google Scholar 

  • Ives RL, Kamarained AM, John DE, Rose JB (2007) Use of cell culture to assess Cryptosporidium parvum survival rates in natural groundwaters and surface waters. Appl Environ Microbiol 73:5968–5970

    Article  PubMed  CAS  Google Scholar 

  • Jenkins MB, Walker MJ, Bowman DD, Anthony LC, Ghiorse WC (1999) Use of a sentinel system for field measurements of Cryptosporidium parvum oocyst inactivation in soil and animal waste. Appl Environ Microbiol 65:1998–2005

    PubMed  CAS  Google Scholar 

  • Jiang J, Alderisio KA, Xiao L (2005) Distribution of Cryptosporidium genotypes in storm event samples from three watersheds in New York. Appl Environ Microbiol 71:4446–4454

    Article  PubMed  CAS  Google Scholar 

  • Johnson AM, Linden K, Ciociola KM, De Leon R, Widmer G, Rochelle PA (2005) UV inactivation of Cryptosporidium hominis as measured in cell culture. Appl Environ Microbiol 71:2800–2802

    Article  PubMed  CAS  Google Scholar 

  • Johnson AM, Rochelle PA, Di Giovanni GD (2008) The risk of cryptosporidiosis from drinking water. In: Proceedings of the American Water Works Association Water Quality Technology Conference, American Water Works Association, Denver

    Google Scholar 

  • Julio C, Sa C, Ferreira I, Martins S, Oleastro M, Angelo H, Guerreiro J, Tenreiro R (2012) Waterborne transmission of Giardia and Cryptosporidium in Southern Europe (Portugal). J Water Health 10(3):484–496

    Article  PubMed  Google Scholar 

  • Karanis P, Kourenti C, Smith H (2007) Waterborne transmission of protozoan parasites: a worldwide review of outbreaks and lessons learnt. J Water Health 5:1–38

    Article  PubMed  Google Scholar 

  • Kato S, Jenkins MB, Ghiorse WC, Bowman DD (2001) Chemical and physical factors affecting the excystation of Cryptosporidium parvum oocysts. J Parasitol 87:575–581

    PubMed  CAS  Google Scholar 

  • Khalakdina A, Vugia DJ, Nadle J, Rothrock GA, Colford Jr JM (2003) Is drinking water a risk factor for endemic cryptosporidiosis? A case–control study in the immunocompetent general population of the San Francisco Bay Area. BMC Public Health 3:11

    Google Scholar 

  • King BJ, Keegan AR, Phillips R, Fanok S, Monis PT (2012) Dissection of the hierarchy and synergism of the bile derived signal on Cryptosporidium parvum excystation and infectivity. Parasitology 139:1533–1546

    Article  PubMed  CAS  Google Scholar 

  • Kishida N, Miyata R, Furuta A, Izumiyama S, Tsuneda S, Sekiguchi Y, Noda N, Akiba M (2012) Quantitative detection of Cryptosporidium oocysts in water source based on 18S rRNA by alternately binding probe competitive reverse transcription polymerase chain reaction (ABC-RT-PCR). Water Res 46:187–194

    Article  PubMed  CAS  Google Scholar 

  • Kuhn RC, Oshima KH (2002) Hollow-fiber ultrafiltration of Cryptosporidium parvum oocysts from a wide variety of 10-L surface water samples. Can J Microbiol 48:542–549

    Article  PubMed  CAS  Google Scholar 

  • Lake IR, Nichols G, Bentham G, Harrison FC, Hunter PR, Kovats SR (2007) Cryptosporidiosis decline after regulation, England and Wales, 1989–2005. Emerg Infect Dis 13:623–625

    Article  PubMed  Google Scholar 

  • Lalancette C, Di Giovanni GD, Prévost M (2010) Improved risk analysis by dual direct detection of total and infectious Cryptosporidium oocysts on cell culture in combination with immunofluorescence assay. Appl Environ Microbiol 76(2):566–577

    Article  PubMed  CAS  Google Scholar 

  • Lalancette C, Genereux M, Mailly J, Servais P, Cote C, Michaud A, Di Giovanni GD, Prévost M (2012) Total and infectious Cryptosporidium oocyst and total Giardia cyst concentrations from distinct agricultural and urban contamination sources in Eastern Canada. J Water Health 10:147–160

    Article  PubMed  Google Scholar 

  • LeChevallier MW, Norton WD (1995) Giardia and Cryptosporidium in raw and finished water. J Am Water Works Assoc 87:54–68

    CAS  Google Scholar 

  • LeChevallier MW, Di Giovanni GD, Clancy JL, Bukhari Z, Bukhari S, Rosen JS, Sobrinho J, Frey MM (2003) Comparison of Method 1623 and cell culture-PCR for detection of Cryptosporidium spp. in source waters. Appl Environ Microbiol 69:971–979

    Article  PubMed  CAS  Google Scholar 

  • Leetz AS, Sotiriadou I, Ongerth J, Karanis P (2007) An evaluation of primers amplifying DNA targets for the detection of Cryptosporidium spp. using C. parvum HNJ-1 Japanese isolate in water. Parasitol Res 101:951

    Article  PubMed  Google Scholar 

  • Leoni F, Amar C, Nichols G, Pedraza-Diaz S, McLauchlin J (2006) Genetic analysis of Cryptosporidium from 2414 humans with diarrhea in England between 1985 and 2000. J Med Microbiol 55:703–707

    Article  PubMed  CAS  Google Scholar 

  • Lester R (2013) Outbreak of cryptosporidiosis extends to regional Victoria. Chief Health Officer Alert, State Government Victoria, Department of Health

    Google Scholar 

  • Lindquist HD, Harris S, Lucas S, Hartzel M, Riner D, Rochelle P, De Leon R (2007) Using ultrafiltration to concentrate and detect Bacillus anthracis, Bacillus atrophaeus subspecies globigii, and Cryptosporidium parvum in 100-liter water samples. J Microbiol Methods 70:484–492

    Article  PubMed  CAS  Google Scholar 

  • MacKenzie WR, Hoxie NJ, Proctor ME, Gradus MS, Blair KA, Peterson DE, Kazmierczak JJ, Addiss DG, Fox KR, Rose JB, Davis JP (1994) A massive outbreak in Milwaukee of Cryptosporidium infection transmitted through the public water supply. N Engl J Med 331:161–167

    Article  CAS  Google Scholar 

  • Madore MS, Rose JB, Gerba CP, Arrowood MJ, Sterling CR (1987) Occurrence of Cryptosporidium oocysts in sewage effluents and select surface waters. J Parasitol 73:702–705

    Article  PubMed  CAS  Google Scholar 

  • Makri A, Modarres R, Parkin R (2004) Cryptosporidiosis susceptibility and risk: a case study. Risk Anal 24(1):209–220

    Article  PubMed  Google Scholar 

  • Masago Y, Oguma K, Katayama H, Hirata T, Ohgaki S (2004) Cryptosporidium monitoring at a water treatment plant, based on waterborne risk assessment. Water Sci Technol 50:293–299

    PubMed  CAS  Google Scholar 

  • Masago Y, Oguma K, Katayama H, Ohgaki S (2006) Quantification and genotyping of Cryptosporidium spp. in river water by quenching probe PCR and denaturing gradient gel electrophoresis. Water Sci Technol 54:119–126

    PubMed  CAS  Google Scholar 

  • McClellan P (1998) Sydney Water Inquiry. Fifth report. Premiers Department, New South Wales

    Google Scholar 

  • McLauchlin J, Amar C, Pedraza-Diaz S, Nichols GL (2000) Molecular epidemiological analysis of Cryptosporidium spp. in the United Kingdom: results of genotyping Cryptosporidium spp. in 1,705 fecal samples from humans and 105 fecal samples from livestock animals. J Clin Microbiol 38:3984–3990

    PubMed  CAS  Google Scholar 

  • Messner M (2011a) LT2 Round 1: Cryptosporidium occurrence. http://water.epa.gov/lawregs/rulesregs/sdwa/lt2/upload/lt2round1crypto.pdf

  • Messner M (2011b) LT2 Round 1: Cryptosporidium matrix spike recovery. http://water.epa.gov/lawregs/rulesregs/sdwa/lt2/upload/lt2round1cryptomatrix.pdf

  • Messner MJ, Wolpert RL (2003) Cryptosporidium and Giardia occurrence in ICR drinking water sources: statistical analysis of ICR data. In: McGuire MJ, McLain JL, Obolensky A (eds) Information Collection Rule data analysis. AWWA Research Foundation and the American Water Works Association, Denver, pp 463–481

    Google Scholar 

  • Miller WA, Lewis DJ, Pereira MD, Lennox M, Conrad PA, Tate KW, Atwill ER (2008) Farm factors associated with reducing Cryptosporidium loading in storm runoff from dairies. J Environ Qual 37:1875–1882

    Article  PubMed  CAS  Google Scholar 

  • Neira-Munoz E, Okoroa C, McCarthy ND (2007) Outbreak of waterborne cryptosporidiosis associated with low oocyst concentrations. Epidemiol Infect 135:1159–1164

    Article  PubMed  CAS  Google Scholar 

  • Nichols G (2003) Using existing surveillance-based systems. In: Hunter PR, Waite M, Ronchi E (eds) Drinking water and infectious disease: establishing the links. CRC Press, Boca Raton, pp 131–141

    Google Scholar 

  • Nichols RA, Paton CA, Smith HV (2004) Survival of Cryptosporidium parvum oocysts after prolonged exposure to still natural mineral waters. J Food Prot 67:517–523

    PubMed  CAS  Google Scholar 

  • Nichols RAB, Campbell BM, Smith HV (2006) Molecular fingerprinting of Cryptosporidium oocysts isolated during water monitoring. Appl Environ Microbiol 72:5428–5435

    Article  PubMed  CAS  Google Scholar 

  • Nichols RA, Connelly L, Sullivan CB, Smith HV (2010) Identification of Cryptosporidium species and genotypes in Scottish raw and drinking waters during a one-year monitoring period. Appl Environ Microbiol 76:5977–5986

    Article  PubMed  CAS  Google Scholar 

  • O’Keefe B (2010) Sydney Water Inquiry: Ten Year Review. NSW Government. nsw.gov.au. Accessed June 2013

  • Okhuysen PC, Chappell CL, Crabb JH, Sterling CR, DuPont HL (1999) Virulence of three distinct Cryptosporidium parvum isolates for healthy adults. J Infect Dis 180:1275–1281

    Article  PubMed  CAS  Google Scholar 

  • Ongerth JE (2013a) LT2 Cryptosporidium data: what do they tell us about Cryptosporidium in surface water in the United States? Environ Sci Technol 47:4029–4038

    Article  PubMed  CAS  Google Scholar 

  • Ongerth JE (2013b) The concentration of Cryptosporidium and Giardia in water- the role and importance of recovery efficiency. Water Res 47:2479–2488

    Article  PubMed  CAS  Google Scholar 

  • Perz JF, Ennever FK, Le Blancq SM (1998) Cryptosporidium in tap water: comparison of predicted risks with observed levels of disease. Am J Epidemiol 147:289–301

    Article  PubMed  CAS  Google Scholar 

  • Pokorny NJ, Weir SC, Carreno RA, Tevors JT, Lee H (2002) Influence of temperature on Cryptosporidium parvum oocyst infectivity in river water samples as detected by tissue culture assay. J Parasitol 88:641–643

    PubMed  Google Scholar 

  • Robinson G, Wright S, Elwin K, Hadfield SJ, Katzer F, Bartley PM, Hunter PR, Nath M, Innes EA, Chalmers RM (2010) Re-description of Cryptosporidium cuniculus in man and Takeuchi, 1979 (Apicomplexa: Cryptosporidiidae): morphology, biology and phylogeny. Int J Parasitol 40:539–1548

    Article  Google Scholar 

  • Rochelle PA (2001) Detection of protozoa in environmental water samples. In: Rochelle PA (ed) Environmental molecular microbiology: protocols and applications. Horizon Scientific Press, Wymondham, p 91

    Google Scholar 

  • Rochelle PA, Fallar D, Marshall MM, Montelone BA, Upton SJ, Woods K (2004) Irreversible UV inactivation of Cryptosporidium spp. despite the presence of UV repair genes. J Eukaryot Microbiol 51:553–562

    Article  PubMed  CAS  Google Scholar 

  • Rochelle PA, Johnson AM, De Leon R, Di Giovanni GD (2012) Assessing the risk of infectious Cryptosporidium in drinking water. J Amer Water Works Assoc, http://dx.doi.org/10.5942/jawwa.2012.104.0063, E325–E336

  • Roscommon County Council (2013) http://www.roscommoncoco.ie/en/Services/Sanitation/Notice_to_Consumers_Supplied_by_the_Roscommon_CWSS/. Accessed June 2013

  • Rose JB, Lisle JT, LeChevallier M (1997) Waterborne cryptosporidiosis: incidence, outbreaks, and treatment strategies. In: Fayer R (ed) Cryptosporidium and Cryptosporidiosis. CRC Press, Boca Raton, pp 93–109

    Google Scholar 

  • Roy SL, DeLong SM, Stenzel SA, Shiferaw B, Roberts JM, Khalakdina A, Marcus R, Segler SD, Shah DD, Thomas S, Vugia DJ, Zansky SM, Dietz V, Beach MJ, Emerging Infections Program FoodNet Working Group (2004) Risk factors for sporadic cryptosporidiosis among immunocompetent persons in the United States from 1999 to 2001. J Clin Microbiol 42:2944–2951

    Article  PubMed  Google Scholar 

  • Ruecker NJ, Bounsombath N, Wallis P, Ong CS, Isaac-Renton JL, Neumann NF (2005) Molecular forensic profiling of Cryptosporidium species and genotypes in raw water. Appl Environ Microbiol 71:8991–8994

    Article  PubMed  CAS  Google Scholar 

  • Ruecker NJ, Hoffman RM, Chalmers RM, Neumann NF (2011) Detection and resolution of Cryptosporidium species and species mixtures by genus-specific nested PCR-restriction fragment length polymorphism analysis, direct sequencing, and cloning. Appl Environ Microbiol 77:3998–4007

    Article  PubMed  CAS  Google Scholar 

  • Ruecker NJ, Matsune JC, Lapen DR, Topp E, Edge TA, Neumann NF (2013) The detection of Cryptosporidium and the resolution of mixtures of species and genotypes from water. Infect Genet Evol 15:3–9

    Article  PubMed  CAS  Google Scholar 

  • Ryan MO, Gurian PL, Haas CN, Rose JB, Duzinski PJ (2013) Acceptable microbial risk: cost-benefit analysis of a boil water order for Cryptosporidium. J Am Water Works Assoc 105:51–52

    CAS  Google Scholar 

  • Schets FM, Engels GB, Evers EG (2004) Cryptosporidium and Giardia in swimming pools in the Netherlands. J Water Health 2:191–200

    PubMed  CAS  Google Scholar 

  • Smeets PW, van Dijk JC, Stanfield G, Rietveld LC, Medema GJ (2007) How can the UK statutory Cryptosporidium monitoring be used for quantitative risk assessment of Cryptosporidium in drinking water? J Water Health 5:107–118

    Article  PubMed  Google Scholar 

  • Staggs SE, Beckman EM, Keely SP, Mackwan R, Ware MW, Moyer AP, Ferretti JA, Sayed A, Xiao L, Villegas EN (2013) The applicability of TaqMan-based quantitative real-time PCR assays for detecting and enumerating Cryptosporidium spp. oocysts in the environment. PLOS One 8(6):e66562. doi:10.1371/journal.pone.0066562

    Article  PubMed  CAS  Google Scholar 

  • States S, Stadterman K, Ammon L, Vogel P, Baldizar J, Wright D, Conley L, Sykora J (1997) Protozoa in river water: sources, occurrence, and treatment. J Am Water Works Assoc 89:74–83

    CAS  Google Scholar 

  • Sulaiman IM, Xiao L, Yang C, Escalante L, Moore A, Beard CB, Arrowood MJ, Lal AA (1998) Differentiating human from animal isolates of Cryptosporidium parvum. Emerg Infect Dis 4:681–685

    Article  PubMed  CAS  Google Scholar 

  • U.S. Environmental Protection Agency (USEPA) (2005) Method 1623: Cryptosporidium and Giardia in water by filtration/IMS/FA. EPA 815-R-05-002. Office of Research and Development, Government Printing Office, Washington, DC

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA) (2006) National Primary Drinking Water Regulations: Long Term 2 Enhanced Surface Water Treatment Rule; Final Rule. Fed Regist 71:654–786

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA) (2012) Method 1623.1: Cryptosporidium and Giardia in water by filtration/IMS/FA. EPA 816-R-12-001. Office of Research and Development, Government Printing Office, Washington, DC

    Google Scholar 

  • Wallis PM, Erlandsen SL, Isaac-Renton JL, Olson ME, Robertson WJ, van Keulen H (1996) Prevalence of Giardia cysts and Cryptosporidium oocysts and characterization of Giardia spp. cysts isolated from drinking water in Canada. Appl Environ Microbiol 62:2789–2797

    PubMed  CAS  Google Scholar 

  • Wilkes G, Ruecker NJ, Neumann NF, Gannon VP, Jokinen C, Sunohara M, Topp E, Pintar KD, Edge TA, Lapen DR (2013) Spatiotemporal analysis of Cryptosporidium species/genotypes and relationships with other zoonotic pathogens in surface water from mixed use watersheds. Appl Environ Microbiol 79:434–448

    Article  PubMed  CAS  Google Scholar 

  • Wilson L, Anthony S, Kay D, Procter C (2008) Evaluation and development of Cryptosporidium risk assessment. Final Report ADA/012/07, Scottish Government

    Google Scholar 

  • Woodmansee DB, Powell EC, Pohlenz JF, Moon HW (1987) Factors affecting motility and morphology of Cryptosporidium sporozoites in vitro. J Protozool 34:295–297

    Article  PubMed  CAS  Google Scholar 

  • Xiao L, Ryan UM (2008) Molecular epidemiology. In: Fayer R, Xiao L (eds) Cryptosporidium and cryptosporidiosis. CRC Press, Boca Raton, p 119

    Google Scholar 

  • Xiao L, Alderisio K, Limor J, Royer M, Lal AA (2000) Identification of species and sources of Cryptosporidium oocysts in storm waters with a small-subunit rRNA-based diagnostic and genotyping tool. Appl Environ Microbiol 66:5492–5498

    Article  PubMed  CAS  Google Scholar 

  • Xiao L, Singh A, Limor J, Graczyk TK, Gradus S, Lal A (2001) Molecular characterization of Cryptosporidium oocysts in samples of raw surface water and wastewater. Appl Environ Microbiol 67:1097–1101

    Article  PubMed  CAS  Google Scholar 

  • Xiao L, Alderisio K, Singh A (2006) Development and standardization of a Cryptosporidium genotyping tool for water samples. Awwa Research Foundation, Denver

    Google Scholar 

  • Yang W, Chen P, Villegas EN, Landy RB, Kanetsky C, Cama V, Dearen T, Schultz CL, Orndorff KG, Prelewicz GJ, Brown MH, Young KR, Xiao L (2008) Cryptosporidium source tracking in the Potomac River watershed. Appl Environ Microbiol 74:6495–6504

    Article  PubMed  CAS  Google Scholar 

  • Yoder JS, Harral C, Beach MJ (2010) Cryptosporidiosis surveillance: United States, 2006–2008. MMWR Surveill Summ 59:1–14

    PubMed  Google Scholar 

  • Yoder JS, Wallace RM, Collier SA, Beach MJ, Hlavsa MC (2012) Cryptosporidiosis surveillance – United States, 2009–2010. MMWR Surveill Summ 61:1–12

    PubMed  Google Scholar 

  • Zhou L, Singh A, Jiang J, Xiao L (2003) Molecular surveillance of Cryptosporidium spp. in raw wastewater in Milwaukee: implications for understanding outbreak occurrence and transmission dynamics. J Clin Microbiol 41:5254–5257

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Rochelle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Rochelle, P.A., Di Giovanni, G.D. (2014). Cryptosporidium Oocysts in Drinking Water and Recreational Water. In: Cacciò, S., Widmer, G. (eds) Cryptosporidium: parasite and disease. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1562-6_12

Download citation

Publish with us

Policies and ethics