Skip to main content

Cryptosporidium: Current State of Genomics and Systems Biological Research

  • Chapter
  • First Online:
Cryptosporidium: parasite and disease

Abstract

Recent years have seen an unprecedented expansion in our knowledge of Cryptosporidium and cryptosporidiosis through the emergence of the genomics and systems biological age. High-quality draft genome sequences are now published for C. parvum and C. hominis, and the draft assembly of C. muris has been made publicly available. These genome sequences reveal a highly stream-lined parasite with limited metabolic and biosynthetic pathways and a heavy reliance on the host-cell. Bottlenecks in these pathways may be exploited for new drugs, which remain stubbornly illusive for these parasites. As more genomic information becomes available, fundamental research into gene regulation, genomic evolution and genome-wide variation becomes possible. This research will provide new insights into the transmission dynamics of these parasites and markers associated with host-specificity, virulence and pathogenicity, and will allow the identification of novel loci for use as molecular-diagnostic markers and genes under heavy immunoselection, potentially providing a basis for vaccine development. With the accelerating reduction in costs associated with ‘omic’ research, improved accessibility to analytical tools and in vitro culture of Cryptospordium, this field has tremendous potential to shape our understanding of their biology in the coming years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeywardena H, Jex AR, Nolan MJ, Haydon SR, Stevens MA, McAnulty RW et al (2012) Genetic characterisation of Cryptosporidium and Giardia from dairy calves: discovery of species/genotypes consistent with those found in humans. Infect Genet Evol 12:1984–1993

    Article  PubMed  CAS  Google Scholar 

  • Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA et al (2004) Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304:441–445

    Article  PubMed  CAS  Google Scholar 

  • Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477

    Article  PubMed  CAS  Google Scholar 

  • Bankier AT, Spriggs HF, Fartmann B, Konfortov BA, Madera M, Vogel C et al (2003) Integrated mapping, chromosomal sequencing and sequence analysis of Cryptosporidium parvum. Genome Res 13:1787–1799

    PubMed  CAS  Google Scholar 

  • Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59

    Article  PubMed  CAS  Google Scholar 

  • Cohn B, Manque P, Lara AM, Serrano M, Sheth N, Buck G (2010) Putative cis-regulatory elements associated with heat shock genes activated during excystation of Cryptosporidium parvum. PLoS One 5:e9512

    Article  PubMed  Google Scholar 

  • Cox J, Mann M (2011) Quantitative, high-resolution proteomics for data-driven systems biology. Annu Rev Biochem 80:273–299

    Article  PubMed  CAS  Google Scholar 

  • Creek DJ, Anderson J, McConville MJ, Barrett MP (2012) Metabolomic analysis of trypanosomatid protozoa. Mol Biochem Parasitol 181:73–84

    Article  PubMed  CAS  Google Scholar 

  • Crowther GJ, Shanmugam D, Carmona SJ, Doyle MA, Hertz-Fowler C, Berriman M et al (2010) Identification of attractive drug targets in neglected-disease pathogens using an in silico approach. PLoS Negl Trop Dis 4:e804

    Article  PubMed  Google Scholar 

  • Fritzsch FS, Dusny C, Frick O, Schmid A (2012) Single-cell analysis in biotechnology, systems biology, and biocatalysis. Annu Rev Chem Biomol Eng 3:129–155

    Article  PubMed  CAS  Google Scholar 

  • Gardner MJ, Bishop R, Shah T, de Villiers EP, Carlton JM, Hall N et al (2005) Genome sequence of Theileria parva, a bovine pathogen that transforms lymphocytes. Science 309:134–137

    Article  PubMed  CAS  Google Scholar 

  • Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW et al (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511

    Article  PubMed  CAS  Google Scholar 

  • Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A et al (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40:D1100–1107

    Article  PubMed  CAS  Google Scholar 

  • Gerstein MB, Lu ZJ, Van Nostrand EL, Cheng C, Arshinoff BI, Liu T et al (2010) Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 330:1775–1787

    Article  PubMed  CAS  Google Scholar 

  • Grindberg RV, Ishoey T, Brinza D, Esquenazi E, Coates RC, Liu WT et al (2011) Single cell genome amplification accelerates identification of the apratoxin biosynthetic pathway from a complex microbial assemblage. PLoS ONE 6:e18565

    Article  PubMed  CAS  Google Scholar 

  • Guthrie OW (2008) Aminoglycoside induced ototoxicity. Toxicology 249:91–96

    Article  PubMed  Google Scholar 

  • Hijjawi N, Estcourt A, Yang R, Monis P, Ryan U (2010) Complete development and multiplication of Cryptosporidium hominis in cell-free culture. Vet Parasitol 169:29–36

    Article  PubMed  CAS  Google Scholar 

  • Jex AR, Chalmers R, Smith HV, Widmer G, McDonald V, Gasser RB (2010) Cryptospordiosis. In: Palmer S, Torgerson P, Soulsby EJ (eds) Zoonoses: Biology, Clinical Practice, and Public Health Control. Oxford University Press, Oxford

    Google Scholar 

  • Jex AR, Gasser RB (2010) Genetic richness and diversity in Cryptosporidium hominis and C. parvum reveals major knowledge gaps and a need for the application of “next generation” technologies – research review. Biotechnol Adv 26:17–26

    Article  Google Scholar 

  • Jex AR, Liu S, Li B, Young ND, Hall RS, Li Y et al (2011a) Ascaris suum draft genome. Nature 479:529–533

    Article  PubMed  CAS  Google Scholar 

  • Jex AR, Smith HV, Nolan MJ, Campbell BE, Young ND, Cantacessi C et al (2011b) Cryptic parasite revealed improved prospects for treatment and control of human cryptosporidiosis through advanced technologies. Adv Parasitol 77:141–173

    PubMed  Google Scholar 

  • Jeyanthi T, Subramanian P (2009) Nephroprotective effect of Withania somnifera: a dose-dependent study. Ren Fail 31:814–821

    Article  PubMed  Google Scholar 

  • Ling J, Zhuang G, Tazon-Vega B, Zhang C, Cao B, Rosenwaks Z et al (2009) Evaluation of genome coverage and fidelity of multiple displacement amplification from single cells by SNP array. Mol Hum Reprod 15:739–747

    Article  PubMed  CAS  Google Scholar 

  • Mallon ME, MacLeod A, Wastling JM, Smith H, Tait A (2003) Multilocus genotyping of Cryptosporidium parvum Type 2: population genetics and sub-structuring. Infect Genet Evol 3:207–218

    Article  PubMed  CAS  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    PubMed  CAS  Google Scholar 

  • Martinez-Salgado C, Lopez-Hernandez FJ, Lopez-Novoa JM (2007) Glomerular nephrotoxicity of aminoglycosides. Toxicol Appl Pharmacol 223:86–98

    Article  PubMed  CAS  Google Scholar 

  • Morgan UM, Xiao L, Hill BD, O’Donoghue P, Limor J, Lal A et al (2000) Detection of the Cryptosporidium parvum “human” genotype in a dugong (Dugong dugon). J Parasitol 86:1352–1354

    PubMed  CAS  Google Scholar 

  • Mullapudi N, Lancto CA, Abrahamsen MS, Kissinger JC (2007) Identification of putative cis-regulatory elements in Cryptosporidium parvum by de novo pattern finding. BMC Genomics 8:13

    Article  PubMed  Google Scholar 

  • Murakami S, Nagai J, Fujii K, Yumoto R, Takano M (2008) Influences of dosage regimen and co-administration of low-molecular weight proteins and basic peptides on renal accumulation of arbekacin in mice. J Antimicrob Chemother 61:658–664

    Article  PubMed  CAS  Google Scholar 

  • Nagai J, Takano M (2010) Molecular-targeted approaches to reduce renal accumulation of nephrotoxic drugs. Expert Opin Drug Metab Toxicol 6:1125–1138

    Article  PubMed  CAS  Google Scholar 

  • Niedringhaus TP, Milanova D, Kerby MB, Snyder MP, Barron AE (2011) Landscape of next-generation sequencing technologies. Anal Chem 83:4327–4341

    Article  PubMed  CAS  Google Scholar 

  • Pannu N, Nadim MK (2008) An overview of drug-induced acute kidney injury. Crit Care Med 36:S216–223

    Article  PubMed  CAS  Google Scholar 

  • Piper MB, Bankier AT, Dear PH (1998) A HAPPY map of Cryptosporidium parvum. Genome Res 8:1299–1307

    PubMed  CAS  Google Scholar 

  • Ponting CP, Hardison RC (2011) What fraction of the human genome is functional? Genome Res 21:1769–1776

    Article  PubMed  CAS  Google Scholar 

  • Preidis GA, Wang HC, Lewis DE, Castellanos-Gonzalez A, Rogers KA, Graviss EA et al (2007) Seropositive human subjects produce interferon-gamma after stimulation with recombinant Cryptosporidium hominis gp15. Am J Trop Med Hyg 77:583–585

    PubMed  CAS  Google Scholar 

  • Radke JR, Behnke MS, Mackey AJ, Radke JB, Roos DS, White MW (2005) The transcriptome of Toxoplasma gondii. BMC Biol 3:26

    Article  PubMed  Google Scholar 

  • Reeder JC, Brown GV (1996) Antigenic variation and immune evasion in Plasmodium falciparum malaria. Immunol Cell Biol 74:546–554

    Article  PubMed  CAS  Google Scholar 

  • Rizzi MD, Hirose K (2007) Aminoglycoside ototoxicity. Curr Opin Otolaryngol Head Neck Surg 15:352–357

    Article  PubMed  Google Scholar 

  • Rossignol JF (2010) Cryptosporidium and Giardia: treatment options and prospects for new drugs. Exp Parasitol 124:45–53

    Article  PubMed  Google Scholar 

  • Schomburg I, Chang A, Schomburg D (2002) BRENDA, enzyme data and metabolic information. Nucleic Acids Res 30:47–49

    Article  PubMed  CAS  Google Scholar 

  • Senda M, DeLustro B, Eugui E, Natsumeda Y (1995) Mycophenolic acid, an inhibitor of IMP dehydrogenase that is also an immunosuppressive agent, suppresses the cytokine-induced nitric oxide production in mouse and rat vascular endothelial cells. Transplantation 60:1143–1148

    Article  PubMed  CAS  Google Scholar 

  • Shirley M (1994) The genome of Eimeria tenella: further studies on its molecular organisation. Parasitol Res 80:366–373

    Article  PubMed  CAS  Google Scholar 

  • Shirley MW (2000) The genome of Eimeria spp., with special reference to Eimeria tenella–a coccidium from the chicken. Int J Parasitol 30:485–493

    Article  PubMed  CAS  Google Scholar 

  • Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K et al (2005) Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 15:1034–1050

    Article  PubMed  CAS  Google Scholar 

  • Smith HV, Nichols RA, Mallon M, Macleod A, Tait A, Reilly WJ et al (2005) Natural Cryptosporidium hominis infections in Scottish cattle. Vet Rec 156:710–711

    PubMed  CAS  Google Scholar 

  • Striepen B, Kissinger JC (2004) Genomics meets transgenics in search of the elusive Cryptosporidium drug target. Trends Parasitol 20:355–358

    Article  PubMed  CAS  Google Scholar 

  • Strong WB, Gut J, Nelson RG (2000) Cloning and sequence analysis of a highly polymorphic Cryptosporidium parvum gene encoding a 60-kilodalton glycoprotein and characterization of its 15- and 45-kilodalton zoite surface antigen products. Infect Immun 68:4117–4134

    Article  PubMed  CAS  Google Scholar 

  • Strong WB, Nelson RG (2000) Gene discovery in Cryptosporidium parvum: expressed sequence tags and genome survey sequences. Contrib Microbiol 6:92–115

    PubMed  CAS  Google Scholar 

  • Tang F, Barbacioru C, Nordman E, Li B, Xu N, Bashkirov VI et al (2010) RNA-Seq analysis to capture the transcriptome landscape of a single cell. Nat Protoc 5:516–535

    Article  PubMed  CAS  Google Scholar 

  • Tanriverdi S, Grinberg A, Chalmers RM, Hunter PR, Petrovic Z, Akiyoshi DE et al (2008) Inferences about the global population structures of Cryptosporidium parvum and Cryptosporidium hominis. Appl Environ Microbiol 74:7227–7234

    Article  PubMed  CAS  Google Scholar 

  • Tugcu V, Ozbek E, Tasci AI, Kemahli E, Somay A, Bas M et al (2006) Selective nuclear factor kappa-B inhibitors, pyrolidium dithiocarbamate and sulfasalazine, prevent the nephrotoxicity induced by gentamicin. BJU Int 98:680–686

    Article  PubMed  CAS  Google Scholar 

  • Umejiego NN, Gollapalli D, Sharling L, Volftsun A, Lu J, Benjamin NN et al (2008) Targeting a prokaryotic protein in a eukaryotic pathogen: identification of lead compounds against cryptosporidiosis. Chem Biol 15:70–77

    Article  PubMed  CAS  Google Scholar 

  • Umejiego NN, Li C, Riera T, Hedstrom L, Striepen B (2004) Cryptosporidium parvum IMP dehydrogenase: identification of functional, structural, and dynamic properties that can be exploited for drug design. J Biol Chem 279:40320–40327

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  PubMed  CAS  Google Scholar 

  • Widmer G, Lee Y, Hunt P, Martinelli A, Tolkoff M, Bodi K (2012) Comparative genome analysis of two Cryptosporidium parvum isolates with different host range. Infect Genet Evol 12:1213–1221

    Article  PubMed  CAS  Google Scholar 

  • Xiao L, Fayer R, Ryan U, Upton SJ (2004) Cryptosporidium taxonomy: recent advances and implications for public health. Clin Microbiol Rev 17:72–97

    Article  PubMed  Google Scholar 

  • Xu P, Widmer G, Wang Y, Ozaki LS, Alves JM, Serrano MG et al (2004) The genome of Cryptosporidium hominis. Nature 431:1107–1112

    Article  PubMed  CAS  Google Scholar 

  • Young ND, Jex AR, Li B, Liu S, Yang L, Xiong Z et al (2012) Whole-genome sequence of Schistosoma haematobium. Nat Genet 44:221–225

    Article  PubMed  CAS  Google Scholar 

  • Zhou L, Singh A, Jiang J, Xiao L (2003) Molecular surveillance of Cryptosporidium spp. in raw wastewater in Milwaukee: implications for understanding outbreak occurrence and transmission dynamics. J Clin Microbiol 41:5254–5257

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Grant support from the Australian Research Council, Melbourne Water Corporation and the Australian National Health and Medical Research Council (NHMRC) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron R. Jex .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Jex, A.R., Gasser, R.B. (2014). Cryptosporidium: Current State of Genomics and Systems Biological Research. In: Cacciò, S., Widmer, G. (eds) Cryptosporidium: parasite and disease. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1562-6_6

Download citation

Publish with us

Policies and ethics