Skip to main content

Abstract

Thomas Henry Huxley, now often remembered as “Darwin’s bulldog”, wrote an entire book dedicated to crayfish, with no less a goal than showing how the study of crayfish could teach the reader all of zoology: “how the careful study of one of the commonest and most insignificant of animals, leads us, step by step, from every-day knowledge to the widest generalizations and the most difficult problems”. In retrospect, Huxley laid out the argument for model organisms several decades before another Thomas, namely, Thomas Hunt Morgan, started using fruit flies as model organisms, which became a wellspring of biological information in the twentieth century. While biology in the nineteenth century emphasised work on diverse species in the field, biology in the twentieth century was driven by a few model organisms in the lab, whether they were rats or fruit flies or Arabidopsis thaliana.

Chapter vignette artwork by Brigitte Baldrian. © Brigitte Baldrian and Andreas Wanninger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abmayr SM, Keller CA (1997) Drosophila myogenesis and insights into the role of nautilus. Curr Top Dev Biol 38:35–80

    Google Scholar 

  • Abzhanov A, Kaufman TC (1999a) Homeotic genes and the arthropod head: expression patterns of the labial, proboscipedia, and Deformed genes in crustaceans and insects. Proc Natl Acad Sci U S A 96:10224–10229. doi:10.1073/pnas.96.18.10224

    CAS  PubMed Central  PubMed  Google Scholar 

  • Abzhanov A, Kaufman TC (1999b) Novel regulation of the homeotic gene Scr associated with a crustacean leg-to-maxilliped appendage transformation. Development 126:1121–1128

    CAS  PubMed  Google Scholar 

  • Abzhanov A, Kaufman TC (2000a) Homologs of Drosophila appendage genes in the patterning of arthropod limbs. Dev Biol 227:673–689. doi:10.1006/dbio.2000.9904

    CAS  PubMed  Google Scholar 

  • Abzhanov A, Kaufman TC (2000b) Embryonic expression patterns of the Hox genes of the crayfish Procambarus clarkii (Crustacea, Decapoda). Evol Dev 2:271–283. doi:10.1046/j.1525-142x.2000.00066.x

    CAS  PubMed  Google Scholar 

  • Abzhanov A, Kaufman TC (2004) Hox genes and tagmatization of the higher Crustacea (Malacostraca). In: Scholtz G (ed) Evolutionary developmental biology of Crustacea. AA Balkema Publishers, Lisse, pp 43–74

    Google Scholar 

  • Alwes F, Scholtz G (2006) Stages and other aspects of the embryology of the parthenogenetic Marmorkrebs (Decapoda, Reptantia, Astacida). Dev Genes Evol 216:169–184. doi:10.1007/s00427-005-0041-8

    PubMed  Google Scholar 

  • Anderson DT (1982) Embryology. In: Abele LG, Bliss DE (eds) The biology of Crustacea, vol 2, Embryology, Morphology and Genetics. Academic, New York, pp 1–41

    Google Scholar 

  • Anger K (2001) The biology of decapod crustacean larvae. AA Balkema Publishers, The Netherlands

    Google Scholar 

  • Anger K (2003) Salinity as a key parameter in the larval biology of decapod crustaceans. Invertebr Reprod Dev 43:29–45. doi:10.1080/07924259.2003.9652520

    Google Scholar 

  • Arcaro KF, Lnenicka GA (1995) Intrinsic differences in axonal growth from crayfish fast and slow motoneurons. Dev Biol 168:272–283. doi:10.1006/dbio.1995.1079

    CAS  PubMed  Google Scholar 

  • Autrum H, Bennet MF, Diehn B, Hamdorf K, Heisenberg M, Järviletho M, Kunze P, Menzel R, Miller WH, Snyder AW, Stavenga DG, Yoshida M (1979) Comparative physiology and evolution of vision in invertebrates: a invertebrate photoreceptors. Springer, Berlin

    Google Scholar 

  • Ayub N, Benton JL, Zhang Y, Beltz BS (2011) Environmental enrichment influences neuronal stem cells in the adult crayfish brain. Dev Neurobio 71:351–361. doi:10.1002/dneu.20864

    CAS  Google Scholar 

  • Bate M (1993) The mesoderm and its derivates. In: Bate M, Martinez-Arias A (eds) The development of Drosophila melanogaster. Cold Spring Harbor Press, Cold Spring Harbor, pp 1013–1090

    Google Scholar 

  • Baylies MK, Bate M, Ruiz Gomez M (1998) Myogenesis: a view from Drosophila. Cell 93:921–927

    CAS  PubMed  Google Scholar 

  • Beltz BS (1999) Distribution and functional anatomy of amine-containing neurons in decapod crustaceans. Microsc Res Tech 44:105–120. doi:10.1002/(SICI)1097-0029(19990115/01)44:2/3<105::AID-JEMT5>3.0.CO;2-K

    CAS  PubMed  Google Scholar 

  • Beltz BS, Kravitz EA (1983) Mapping of serotonin-like immunoreactivity in the lobster nervous system. J Neurosci 3:585–602

    CAS  PubMed  Google Scholar 

  • Beltz BS, Sandeman DC (2003) Regulation of life-long neurogenesis in the decapod crustacean brain. Arthropod Struct Dev 32:39–60. doi:10.1016/S1467-8039(03)00038-0

    PubMed  Google Scholar 

  • Beltz BS, Pontes M, Helluy SM, Kravitz EA (1990) Patterns of appearance of serotonin and proctolin immunoreactivities in the developing nervous system of the American lobster. J Neurobiol 21:521–542. doi:10.1002/neu.480210402

    CAS  PubMed  Google Scholar 

  • Beltz BS, Helluy SM, Ruchhoeft ML, Gammill LS (1992) Aspects of the embryology and neural development of the American lobster. J Exp Zool 261:288–297. doi:10.1002/jez.1402610308

    CAS  PubMed  Google Scholar 

  • Beltz BS, Benton JL, Sullivan JM (2001) Transient uptake of serotonin by newborn olfactory projection neurons. Proc Natl Acad Sci U S A 98:12730–12735. doi:10.1073/pnas.231471298

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beltz BS, Tlusty MF, Benton JL, Sandeman DC (2007) Omega-3 fatty acids upregulate adult neurogenesis. Neurosci Lett 415:154–158. doi:10.1016/j.neulet.2007.01.010

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beltz BS, Zhang Y, Benton JL, Sandeman DC (2011) Adult neurogenesis in the decapod crustacean brain: a hematopoietic connection? Eur J Neurosci 34:870–883. doi:10.1111/j.1460-9568.2011.07802.x

    PubMed Central  PubMed  Google Scholar 

  • Benton JL, Beltz BS (2001) Effects of serotonin depletion on local interneurons in the developing olfactory pathway of lobsters. J Neurobiol 46:193–205. doi:10.1002/1097-4695(20010215)46:3<193::AID-NEU1002>3.0.CO;2-8

    CAS  PubMed  Google Scholar 

  • Benton JL, Beltz BS (2002) Patterns of neurogenesis in the midbrain of embryonic lobsters differ from proliferation in the insect and the crustacean ventral nerve cord. J Neurobiol 53:57–67. doi:10.1002/neu.10110

    PubMed  Google Scholar 

  • Benton JL, Huber R, Ruchhoeft ML, Helluy SM, Beltz BS (1997) Serotonin depletion by 5,7-dihydroxytryptamine alters deutocerebral development in the lobster, Homarus americanus. J Neurobiol 33:357–373. doi:10.1002/(SICI)1097-4695(199710)33:4<357::AID-NEU2>3.0.CO;2-9

    CAS  PubMed  Google Scholar 

  • Benton JL, Chaves da Silva PG, Sandeman DC, Beltz BS (2013) First-generation neuronal precursors in the crayfish brain are not self-renewing. Int J Dev Neurosci 31:657–666. doi:10.1016/j.ijdevneu.2012.11.010

    CAS  PubMed  Google Scholar 

  • Bohman P, Edsman L, Martin P, Scholtz G (2013) The first Marmorkrebs (Decapoda: Astacida: Cambaridae) in Scandinavia. BioInvasions Records 2:227–232

    Google Scholar 

  • Bovbjerg RV (1953) Dominance order in the crayfish Orconectes virilis (Hagen). Physiol Zool 26:173–178

    Google Scholar 

  • Bovbjerg RV (1956) Some factors affecting aggressive behavior in crayfish. Physiol Zool 29:127–136

    Google Scholar 

  • Breithaupt T, Thiel M (eds) (2011) Chemical communication in Crustaceans. Springer, New York

    Google Scholar 

  • Brenneis G, Stollewerk A, Scholtz G (2013) Embryonic neurogenesis in Pseudopallene sp. (Arthropoda, Pycnogonida) includes two subsequent phases with similarities to different arthropod groups. EvoDevo 4:32

    PubMed Central  PubMed  Google Scholar 

  • Browne WE, Schmid BGM, Wimmer EA, Martindale MQ (2006) Expression of otd orthologs in the amphipod crustacean, Parhyale hawaiensis. Dev Genes Evol 216:581–595. doi:10.1007/s00427-006-0074-7

    PubMed  Google Scholar 

  • Burrage TG, Sherman RG (1979) Formation of sarcomeres in the embryonic heart of the lobster. Cell Tissue Res 198:477–486. doi:10.1007/BF00234192

    CAS  PubMed  Google Scholar 

  • Campos-Ortéga JA, Hartenstein V (1997) The embryonic development of Drosophila melanogaster. Springer, Berlin

    Google Scholar 

  • Charmantier G (1998) Ontogeny of osmoregulation in crustaceans: a review. Invertebr Reprod Dev 33:177–190. doi:10.1080/07924259.1998.9652630

    CAS  Google Scholar 

  • Charmantier G, Charmantier-Daures M (1998) Endocrine and neuroendocrine regulations in embryos and larvae of crustaceans. Invertebr Reprod Dev 33:273–287. doi:10.1080/07924259.1998.9652638

    CAS  Google Scholar 

  • Charmantier G, Charmantier-Daures M, Towle D (2009) In: Evans (ed) Osmotic and ionic regulation in aquatic arthropods. Taylor and Francis, London, pp 165–208

    Google Scholar 

  • Chaves da Silva PG, Benton JL, Beltz BS, Allodi S (2012) Adult neurogenesis: ultrastructure of a neurogenic niche and neurovascular relationships. PLoS ONE 7:e39267. doi:10.1371/journal.pone.0039267

    PubMed Central  Google Scholar 

  • Chaves da Silva PG, Benton JL, Sandeman DC, Beltz BS (2013) Adult neurogenesis in the crayfish brain: the hematopoietic anterior proliferation center has direct access to the brain and stem cell niche. Stem Cells Dev 22:1027–1041. doi:10.1089/scd.2012.0583

    CAS  PubMed  Google Scholar 

  • Chucholl C, Morawetz K, Groß H (2012) The clones are coming – strong increase in Marmorkrebs [Procambarus fallax (Hagen, 1870) f. virginalis] records from Europe. Aquatic Invasions 7:511–519

    Google Scholar 

  • Cieluch U, Anger K, Aujoulat F, Buchholz F, Charmantier-Daures M, Charmantie G (2004) Ontogeny of osmoregulatory structures and functions in the green crab Carcinus maenas (Crustacea, Decapoda). J Exp Biol 207:325–336. doi:10.1242/jeb.00759

    CAS  PubMed  Google Scholar 

  • Cieluch U, Charmantier G, Grousset E, Charmantier-Daures M, Anger K (2005) Osmoregulation, immunolocalization of Na + /K + -ATPase, and ultrastructure of branchial epithelia in the developing brown shrimp, Crangon crangon (Decapoda, Caridea). Physiol Biochem Zool 78:1017–1025. doi:10.1086/432856

    CAS  PubMed  Google Scholar 

  • Cieluch U, Anger K, Charmantier-Daures M, Charmantier G (2007) Osmoregulation and immunolocalization of Na+/K+-ATPase during the ontogeny of the mitten crab Eriocheir sinensis (Decapoda, Grapsoidea). Mar Ecol Prog Ser 329:169–178. doi:10.3354/meps329169

    CAS  Google Scholar 

  • Claiborne BJ, Selverston AI (1984) Histamine as a neurotransmitter in the stomatogastric nervous system of the spiny lobster. J Neurosci 4:708–721

    CAS  PubMed  Google Scholar 

  • Cole JJ, Lang F (1980) Spontaneous and evoked postsynaptic potentials in an embryonic neuromuscular system of the lobster, Homarus americanus. J Neurobiol 11:459–470. doi:10.1002/neu.480110505

    CAS  PubMed  Google Scholar 

  • Costello WJ, Hill R, Lang F (1981) Innervation patterns of fast and slow motor neurones during development of a lobster neuromuscular system. J Exp Biol 91:271–284

    Google Scholar 

  • Cournil I, Casasnovas B, Helluy SM, Beltz BS (1995) Dopamine in the lobster Homarus gammarus: II. Dopamine-immunoreactive neurons and development of the nervous system. J Comp Neurol 362:1–16. doi:10.1002/cne.903620102

    CAS  PubMed  Google Scholar 

  • Davis WJ, Davis KB (1973) Ontogeny of a simple locomotor system: role of the periphery in the development of central nervous circuitry. Am Zool 13:409–425. doi:10.1093/icb/13.2.409

    Google Scholar 

  • Derby CD, Weissburg MJ (2014) The chemical senses and chemosensory ecology of crustaceans. In: The Natural history of crustacea Vol. 3 - Nervous systems & Control of behavior (eds. C. Derby, M. Thiel). Oxford University Press, New York: pp. 263–292

    Google Scholar 

  • Derby CD, Fortier JK, Harrison PJH, Cate HS (2003) The peripheral and central antennular pathway of the Caribbean stomatopod crustacean Neogonodactylus oerstedii. Arthropod Struct Dev 32:175–188. doi:10.1016/S1467-8039(03)00048-3

    PubMed  Google Scholar 

  • Dohle W (1972) Über die Bildung und Differenzierung des postnauplialen Keimstreifs von Leptochelia spec. (Crustacea, Tanaidacea). Zool Jb Anat 89:503–566

    Google Scholar 

  • Dohle W (1998) Myriapod-insect relationships as opposed to an insect-crustacean sister group relationship. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Springer, Netherlands, pp 305–315

    Google Scholar 

  • Dohle W (2001) Are the insects terrestrial crustaceans? A discussion of some new facts and arguments and the proposal of the proper name “Tetraconata” for the monophyletic unit Crustacea + Hexapoda. Annales de la Société entomologique de France. Société Entomologique de, France, pp 85–103

    Google Scholar 

  • Dohle W, Scholtz G (1988) Clonal analysis of the crustacean segment: the discordance between genealogical and segmental borders. Development 104:147–160

    Google Scholar 

  • Dohle W, Scholtz G (1997) How far does cell lineage influence cell fate specification in crustacean embryos? Semin Cell Dev Biol 8:379–390. doi:10.1006/scdb.1997.0162

    CAS  PubMed  Google Scholar 

  • Dohle W, Gerberding M, Hejnol A, Scholtz G (2004) Cell lineage, segment differentiation, and gene expression in crustaceans. In: Scholtz G (ed) Evolutionary developmental biology of Crustacea. AA Balkema Publishers, Lisse, pp 95–134

    Google Scholar 

  • Dorn NJ (2013) Consumptive effects of crayfish limit snail populations. Freshwater Sci 32:1298–1308

    Google Scholar 

  • Dorn N, Trexler JC (2007) Crayfish assemblage shifts in a large drought-prone wetland: the roles of hydrology and competition. Freshwater Biol 52:2399–2411

    Google Scholar 

  • Dorn N, Volin JC (2009) Resistance of crayfish (Procambarus spp.) populations to wetland drying depends on species and substrate. J North Am Benthol Soc 28:766–777

    Google Scholar 

  • Drummond JM, Macmillan DL (1998a) The abdominal motor system of the crayfish. Cherax destructor. I. Morphology and physiology of the superficial extensor motor neurons. J Comparative Physiol A 183:583–601

    Google Scholar 

  • Drummond JM, Macmillan DL (1998b) The abdominal motor system of the crayfish. Cherax destructor. II. Morphology and physiology of the deep extensor motor neurons. J Comparative Physiol A 183:603–619

    Google Scholar 

  • Duffy JE, Thiel M (2007) Evolutionary ecology of social and sexual systems: Crustaceans as model organisms. Oxford University Press, Oxford

    Google Scholar 

  • Duman-Scheel M, Patel NH (1999) Analysis of molecular marker expression reveals neuronal homology in distantly related arthropods. Development 126:2327–2334

    CAS  PubMed  Google Scholar 

  • Dumont JPC, Wine JJ (1987) The telson flexor neuromuscular system of the crayfish: I. Homology with the fast flexor system. J Exp Biol 127:249–277

    Google Scholar 

  • Eguchi E, Tominaga Y (1999) Atlas of arthropod sensory receptors: dynamic morphology in relation to function. Springer, Tokyo

    Google Scholar 

  • Eguchi E, Arikawa K, Ishibashi S, Suzuki T, Meyer-Rochow V (1989) Growth-related biometrical and biochemical studies of the compound eye of the crab, Hemigrapsus sanguineus: physiology. Zool Sci 6:241–250

    Google Scholar 

  • Eisen JS (1991) Developmental neurobiology of the zebrafish. J Neurosci 11:311–317

    CAS  PubMed  Google Scholar 

  • El Haj AJ (1999) Regulation of muscle growth and sarcomeric protein gene expression over the intermolt cycle. Am Zool 39:570–579. doi:10.1093/icb/39.3.570

    Google Scholar 

  • Elofsson R (1969) The development of the compound eyes of Penaeus duorarum (Crustacea: Decapoda) with remarks on the nervous system. Z Zellforsch 97:323–350. doi:10.1007/BF00968840

    CAS  PubMed  Google Scholar 

  • Exner S (1891) Die Physiologie der facettirten Augen von Krebsen und Insecten : eine Studie. Deuticke, Leipzig

    Google Scholar 

  • Exner S (1989) The physiology of the compound eyes of insects and Crustaceans: a study. Springer, Berlin

    Google Scholar 

  • Fabritius-Vilpoux K, Bisch-Knaden S, Harzsch S (2008) Engrailed-like immunoreactivity in the embryonic ventral nerve cord of the Marbled Crayfish (Marmorkrebs). Invert Neurosci 8:177–197. doi:10.1007/s10158-008-0081-7

    PubMed  Google Scholar 

  • Faulkes Z (2010) The spread of the parthenogenetic marbled crayfish, Marmorkrebs (Procambarus sp.), in the North American pet trade. Aquatic Invasions 5:447–450

    Google Scholar 

  • Faulkes Z (2013) How much is that crayfish in the window? Online monitoring of Marmorkrebs, Procambarus fallax f. virginalis (Hagen, 1870) in the North American pet trade. Freshwater Crayfish 19:39–44

    Google Scholar 

  • Faulkes Z, Feria TP, Muñoz J (2012) Do Marmorkrebs, Procambarus fallax f. virginalis, threaten freshwater Japanese ecosystems? Aquatic Biosystems 8:13

    PubMed Central  PubMed  Google Scholar 

  • Feria TP, Faulkes Z (2011) Forecasting the distribution of Marmorkrebs, a parthenogenetic crayfish with high invasive potential, in Madagascar, Europe, and North America. Aquatic Invasions 6:55–67

    Google Scholar 

  • Figler MH, Cheverton HM, Blank GS (1999) Shelter competition in juvenile red swamp crayfish (Procambarus clarkii): the influences of sex differences, relative size, and prior residence. Aquaculture 178:63–75

    Google Scholar 

  • Fischer AH, Scholtz G (2010) Axogenesis in the stomatopod crustacean Gonodactylaceus falcatus (Malacostraca). Invertebr Biol 129:59–76. doi:10.1111/j.1744-7410.2010.00192.x

    Google Scholar 

  • Friedrich M, Wood EJ, Wu M (2011) Developmental evolution of the insect retina: insights from standardized numbering of homologous photoreceptors. J Exp Zool 316B:484–499. doi:10.1002/jez.b.21424

    Google Scholar 

  • Garzino V, Reichert H (1994) Early embryonic expression of a 60-kD glycoprotein in the developing nervous system of the lobster. J Comp Neurol 346:572–582. doi:10.1002/cne.903460409

    CAS  PubMed  Google Scholar 

  • Gerberding M, Scholtz G (1999) Cell lineage of the midline cells in the amphipod crustacean Orchestia cavimana (Crustacea, Malacostraca) during formation and separation of the germ band. Dev Gene Evol 209:91–102. doi:10.1007/s004270050231

    CAS  Google Scholar 

  • Gerberding M, Scholtz G (2001) Neurons and glia in the midline of the higher crustacean Orchestia cavimana are generated via an invariant cell lineage that comprises a median neuroblast and glial progenitors. Dev Biol 235:397–409. doi:10.1006/dbio.2001.0302

    CAS  PubMed  Google Scholar 

  • Gerberding M, Patel NH, Stern CD (2004) Gastrulation in crustaceans: germ layers and cell lineages, Gastrulation: from Cells to Embryo. Cold Spring Harbor Press, New York, pp 79–89

    Google Scholar 

  • Goergen EM, Bagay LA, Rehm K, Benton JL, Beltz BS (2002) Circadian control of neurogenesis. J Neurobiol 53:90–95. doi:10.1002/neu.10095

    PubMed  Google Scholar 

  • Govind CK (1982) Development of nerve, muscle, and synapse. In: Atwood HL, Sandeman DC (eds) Neurobiology: structure and function. Academic, New York, pp 185–202

    Google Scholar 

  • Govind CK (1995) Muscles and their innervation. In: Factor JR (ed) Biology of the Lobster: Homarus americanus. Academic, San Diego, pp 291–310

    Google Scholar 

  • Govind CK, Derosa RA (1983) Fine structure of comparable synapses in a mature and larval lobster muscle. Tissue Cell 15:97–106. doi:10.1016/0040-8166(83)90036-8

    CAS  PubMed  Google Scholar 

  • Govind CK, Pearce J (1981) Remodeling of multiterminal innervation by nerve terminal sprouting in an identifiable lobster motoneuron. Science 212:1522–1524. doi:10.1126/science.7233240

    CAS  PubMed  Google Scholar 

  • Govind CK, Pearce J (1982) Proliferation and relocation of developing lobster neuromuscular synapses. Dev Biol 90:67–78. doi:10.1016/0012-1606(82)90212-3

    CAS  PubMed  Google Scholar 

  • Govind CK, Pearce J (1989) Growth of inhibitory innervation in a lobster muscle. J Morphol 199:197–205. doi:10.1002/jmor.1051990206

    CAS  PubMed  Google Scholar 

  • Govind CK, Walrond JP (1989) Structural plasticity at crustacean neuromuscular synapses. J Neurobiol 20:409–421. doi:10.1002/neu.480200511

    CAS  PubMed  Google Scholar 

  • Govind CK, Meiss DE, Pearce J (1982) Differentiation of identifiable lobster neuromuscular synapses during development. J Neurocytol 11:235–247. doi:10.1007/BF01258245

    CAS  PubMed  Google Scholar 

  • Govind CK, Stephens PJ, Eisen JS (1985) Polyneuronal innervation of an adult and embryonic lobster muscle. J Embryol Exp Morphol 87:13–26

    CAS  PubMed  Google Scholar 

  • Graham ME, Herberholz J (2008) Stability of dominance relationships in crayfish depends on social context. Animal Behav 77:195–199

    Google Scholar 

  • Hafner GS, Tokarski TR (1998) Morphogenesis and pattern formation in the retina of the crayfish Procambarus clarkii. Cell Tissue Res 293:535–550. doi:10.1007/s004410051146

    CAS  PubMed  Google Scholar 

  • Hafner GS, Tokarski TR (2001) Retinal development in the lobster Homarus americanus. Cell Tissue Res 305:147–158. doi:10.1007/s004410100413

    CAS  PubMed  Google Scholar 

  • Hafner GS, Tokarski TR, Hammond-Soltis G (1982) Development of the crayfish retina: a light and electron microscopic study. J Morphol 173:101–118. doi:10.1002/jmor.1051730109

    CAS  PubMed  Google Scholar 

  • Hafner GS, Tokarski TR, Kipp J (1991) Changes in the microvillus cytoskeleton during rhabdom formation in the retina of the crayfish Procambarus clarkii. J Neurocytol 20:585–596. doi:10.1007/BF01215266

    CAS  PubMed  Google Scholar 

  • Hafner GS, Martin RL, Tokarski TR (2003) Photopigment gene expression and rhabdom formation in the crayfish (Procambarus clarkii). Cell Tissue Res 311:99–105. doi:10.1007/s00441-002-0658-0

    CAS  PubMed  Google Scholar 

  • Hallberg E, Hansson BS (1999) Arthropod sensilla: morphology and phylogenetic considerations. Microsc Res Tech 47:428–439. doi:10.1002/(SICI)1097-0029(19991215)47:6<428::AID-JEMT6>3.0.CO;2-P

    CAS  PubMed  Google Scholar 

  • Hallberg E, Skog M (2011) Chemosensory sensilla in crustaceans. In: Breithaupt T, Thiel M (eds) Chemical communication in Crustaceans. Springer, New York, pp 103–121

    Google Scholar 

  • Hallberg E, Johansson KUI, Elofsson R (1992) The aesthetasc concept: structural variations of putative olfactory receptor cell complexes in crustacea. Microsc Res Tech 22:325–335. doi:10.1002/jemt.1070220403

    CAS  PubMed  Google Scholar 

  • Hannibal RL, Price AL, Patel NH (2012) The functional relationship between ectodermal and mesodermal segmentation in the crustacean, Parhyale hawaiensis. Dev Biol 361:427–438. doi:10.1016/j.ydbio.2011.09.033

    CAS  PubMed  Google Scholar 

  • Hansen A, Schmidt M (2001) Neurogenesis in the central olfactory pathway of the adult shore crab Carcinus maenas is controlled by sensory afferents. J Comp Neurol 441:223–233. doi:10.1002/cne.1408

    CAS  PubMed  Google Scholar 

  • Hansen A, Schmidt M (2004) Influence of season and environment on adult neurogenesis in the central olfactory pathway of the shore crab, Carcinus maenas. Brain Res 1025:85–97. doi:10.1016/j.brainres.2004.08.001

    CAS  PubMed  Google Scholar 

  • Harper SL, Reiber CL (2004) Physiological development of the embryonic and larval crayfish heart. Biol Bull 206:78–86

    CAS  PubMed  Google Scholar 

  • Harrison PJH, Cate HS, Steullet P, Derby CD (2001a) Structural plasticity in the olfactory system of adult spiny lobsters: postembryonic development permits life-long growth, turnover, and regeneration. Mar Freshwat Res 52:1357–1365

    Google Scholar 

  • Harrison PJH, Cate HS, Swanson ES, Derby CD (2001b) Postembryonic proliferation in the spiny lobster antennular epithelium: rate of genesis of olfactory receptor neurons is dependent on molt stage. J Neurobiol 47:51–66. doi:10.1002/neu.1015

    CAS  PubMed  Google Scholar 

  • Hartmann B, Reichert H (1998) The genetics of embryonic brain development in Drosophila. Mol Cell Neurosci 12:194–205. doi:10.1006/mcne.1998.0716

    CAS  PubMed  Google Scholar 

  • Harzsch S (2001) Neurogenesis in the crustacean ventral nerve cord: homology of neuronal stem cells in Malacostraca and Branchiopoda? Evol Dev 3:154–169. doi:10.1046/j.1525-142x.2001.003003154.x

    CAS  PubMed  Google Scholar 

  • Harzsch S (2002) From stem cell to structure: neurogenesis in the CNS of decapod crustaceans. In: Wiese K (ed) The Crustacean nervous system. Springer, Berlin, pp 417–432

    Google Scholar 

  • Harzsch S (2003a) Ontogeny of the ventral nerve cord in malacostracan crustaceans: a common plan for neuronal development in Crustacea, Hexapoda and other Arthropoda? Arthropod Struct Dev 32:17–37. doi:10.1016/S1467-8039(03)00008-2

    PubMed  Google Scholar 

  • Harzsch S (2003b) Evolution of identified arthropod neurons: the serotonergic system in relation to engrailed-expressing cells in the embryonic ventral nerve cord of the American lobster Homarus americanus Milne Edwards, 1873 (Malacostraca, Pleocyemata, Homarida). Dev Biol 258:44–56. doi:10.1016/S0012-1606(03)00113-1

  • Harzsch S, Dawirs RR (1993) On the morphology of the central nervous system in larval stages of Carcinus maenas L. (Decapoda, Brachyura). Helgoländer Meeresun 47:61–79. doi:10.1007/BF02366185

    Google Scholar 

  • Harzsch S, Dawirs RR (1994) Neurogenesis in larval stages of the spider crab Hyas araneus (Decapoda, Brachyura): proliferation of neuroblasts in the ventral nerve cord. Roux’s Arch Dev Biol 204:93–100. doi:10.1007/BF00361103

    Google Scholar 

  • Harzsch S, Dawirs RR (1995) A developmental study of serotonin-immunoreactive neurons in the larval central nervous system of the spider crab Hyas araneus (Decapoda, Brachyura). Invert Neurosci 1:53–65. doi:10.1007/BF02331832

    CAS  PubMed  Google Scholar 

  • Harzsch S, Dawirs RR (1996a) Maturation of the compound eyes and eyestalk ganglia during larval development of the brachyuran crustaceans Hyas araneus L (Decapoda, Majidae) and Carcinus maenas L (Decapoda, Portunidae). Zool-Anal Compl Syst 99:189–204

    Google Scholar 

  • Harzsch S, Dawirs RR (1996b) Neurogenesis in the developing crab brain: postembryonic generation of neurons persists beyond metamorphosis. J Neurobiol 29:384–398. doi:10.1002/(SICI)1097-4695(199603)29:3<384::AID-NEU9>3.0.CO;2-5

    CAS  PubMed  Google Scholar 

  • Harzsch S, Dawirs RR (1996c) Development of neurons exhibiting FMRFamide-related immunoreactivity in the central nervous system of larvae of the spider crab Hyas araneus L. (Decapoda: Majidae). J Crustacean Biol 16:10. doi:10.2307/1548925

    Google Scholar 

  • Harzsch S, Hafner GS (2006) Evolution of eye development in arthropods: phylogenetic aspects. Arthropod Struct Dev 35:319–340. doi:10.1016/j.asd.2006.08.009

    PubMed  Google Scholar 

  • Harzsch S, Kreissl S (2010) Myogenesis in the thoracic limbs of the American lobster. Arthropod Struct Dev 39:423–435. doi:10.1016/j.asd.2010.06.001

    PubMed  Google Scholar 

  • Harzsch S, Walossek D (2001) Neurogenesis in the developing visual system of the branchiopod crustacean Triops longicaudatus (LeConte, 1846): corresponding patterns of compound-eye formation in Crustacea and Insecta? Dev Genes Evol 211:37–43. doi:10.1007/s004270000113

    CAS  PubMed  Google Scholar 

  • Harzsch S, Anger K, Dawirs RR (1997) Immunocytochemical detection of acetylated alpha-tubulin and Drosophila synapsin in the embryonic crustacean nervous system. Int J Dev Biol 41:477–484

    CAS  PubMed  Google Scholar 

  • Harzsch S, Miller J, Benton JL, Dawirs RR, Beltz BS (1998) Neurogenesis in the thoracic neuromeres of two crustaceans with different types of metamorphic development. J Exp Biol 201:2465–2479

    PubMed  Google Scholar 

  • Harzsch S, Benton J, Dawirs RR, Beltz BS (1999a) A new look at embryonic development of the visual system in decapod crustaceans: neuropil formation, neurogenesis, and apoptotic cell death. J Neurobiol 39:294–306. doi:10.1002/(SICI)1097-4695(199905)39:2<294::AID-NEU13>3.0.CO;2-Q

    CAS  PubMed  Google Scholar 

  • Harzsch S, Miller J, Benton JL, Beltz BS (1999b) From embryo to adult: persistent neurogenesis and apoptotic cell death shape the lobster deutocerebrum. J Neurosci 19:3472–3485

    CAS  PubMed  Google Scholar 

  • Harzsch S, Müller CHG, Wolf H (2005) From variable to constant cell numbers: cellular characteristics of the arthropod nervous system argue against a sister-group relationship of Chelicerata and “Myriapoda” but favour the Mandibulata concept. Dev Genes Evol 215:53–68. doi:10.1007/s00427-004-0451-z

    PubMed  Google Scholar 

  • Harzsch S, Dircksen H, Beltz BS (2009) Development of pigment-dispersing hormone-immunoreactive neurons in the American lobster: homology to the insect circadian pacemaker system? Cell Tissue Res 335:417–429. doi:10.1007/s00441-008-0728-z

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harzsch S, Sandeman DC, Chaigneau J (2012) Morphology and development of the central nervous system. In: Forest J, von Vaupel Klein JC (eds) Treatise on zoology-anatomy, taxonomy, biology, The Crustacea. Brill, Leiden, pp 9–236

    Google Scholar 

  • Hashemzadeh-Gargari H, Freschi JE (1992) Histamine activates chloride conductance in motor neurons of the lobster cardiac ganglion. J Neurophysiol 68:9–15

    CAS  PubMed  Google Scholar 

  • Helluy S, Sandeman RE, Beltz BS, Sandeman DC (1993) Comparative brain ontogeny of the crayfish and clawed lobster: implications of direct and larval development. J Comp Neurol 335:343–354. doi:10.1002/cne.903350305

  • Helluy S, Ruchhoeft ML, Beltz BS (1995) Development of the olfactory and accessory lobes in the american lobster: an allometric analysis and its implications for the deutocerebral structure of decapods. J Comp Neurol 357:433–445. doi:10.1002/cne.903570308

    CAS  PubMed  Google Scholar 

  • Helluy SM, Benton JL, Langworthy KA, Ruchhoeft ML, Beltz BS (1996) Glomerular organization in developing olfactory and accessory lobes of American lobsters: stabilization of numbers and increase in size after metamorphosis. J Neurobiol 29:459–472. doi:10.1002/(SICI)1097-4695(199604)29:4<459::AID-NEU4>3.0.CO;2-7

    CAS  PubMed  Google Scholar 

  • Hendrix AN, Loftus WF (2000) Distribution and relative abundance of the crayfishes Procambarus alleni (Faxon) and P. fallax (Hagen) in southern Florida. Wetlands 20:194–199

    Google Scholar 

  • Hertzler PL (2002) Development of the mesendoderm in the dendrobranchiate shrimp Sicyonia ingentis. Arthropod Struct Dev 31:33–49. doi:10.1016/S1467-8039(02)00018-X

    PubMed  Google Scholar 

  • Hertzler PL (2005) Cleavage and gastrulation in the shrimp Penaeus (Litopenaeus) vannamei (Malacostraca, Decapoda, Dendrobranchiata). Arthropod Struct Dev 34:455–469. doi:10.1016/j.asd.2005.01.009

    Google Scholar 

  • Hertzler PL, Freas WR (2009) Pleural muscle development in the shrimp Penaeus (Litopenaeus) vannamei (Crustacea: Malacostraca: Decapoda: Dendrobranchiata). Arthropod Struct Dev 38:235–246. doi:10.1016/j.asd.2008.12.003

    PubMed  Google Scholar 

  • Hobbs HH Jr (1942) The crayfishes of Florida, vol 3, University of Florida publication: biological series. University of Florida, Gainesville, pp 1–179

    Google Scholar 

  • Holdich DM (2002) Biology of freshwater crayfish, 1st edn. Blackwell Science, Oxford

    Google Scholar 

  • Horridge GA (1975) The compound eye and vision of insects. Clarendon Press, Oxford

    Google Scholar 

  • Huber R, Delago A (1998) Serotonin alters decisions to withdraw in fighting crayfish, Astacus astacus: the motivational concept revisited. J Comp Physiol A 182:573–583

    Google Scholar 

  • Hunnekuhl VS, Wolff C (2012) Reconstruction of cell lineage and spatiotemporal pattern formation of the mesoderm in the amphipod crustacean Orchestia cavimana. Dev Dyn 241:697–717. doi:10.1002/dvdy.23758

    PubMed  Google Scholar 

  • Jarvis E, Bruce HS, Patel NH (2012) Evolving specialization of the arthropod nervous system. Proc Natl Acad Sci U S A 109:10634–10639. doi:10.1073/pnas.1201876109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jirikowski G, Kreissl S, Richter S, Wolff C (2010) Muscle development in the marbled crayfish—insights from an emerging model organism (Crustacea, Malacostraca, Decapoda). Dev Genes Evol 220:89–105. doi:10.1007/s00427-010-0331-7

    PubMed  Google Scholar 

  • Jirikowski G, Richter S, Wolff C (2013) Myogenesis of malacostraca – the “egg-nauplius” concept revisited. Front Zool 10:76. doi:10.1186/1742-9994-10-76

    PubMed Central  PubMed  Google Scholar 

  • Jones JPG, Rasamy JR, Harvey A, Toon A, Oidtmann B, Randrianarison MH, Raminosoa N, Ravoahangimalala OR (2009) The perfect invader: a parthenogenic crayfish poses a new threat to Madagascar’s freshwater biodiversity. Biol Invasions 11:1475–1482

    Google Scholar 

  • Kawai T, Takahata M (eds) (2010) Biology of crayfish. Hokkaido University Press, Sapporo

    Google Scholar 

  • Kawai T, Scholtz G, Morioka S, Ramanamandimby F, Lukhaup C, Hanamura Y (2009) Parthenogenetic alien crayfish (Decapoda: cambaridae) spreading in Madagascar. Journal of Crustacean Biology 29:562–567

    Google Scholar 

  • Kenning M, Müller C, Wirkner CS, Harzsch S (2013) The Malacostraca (Crustacea) from a neurophylogenetic perspective: new insights from brain architecture in Nebalia herbstii Leach, 1814 (Leptostraca, Phyllocarida). Zool Anz 252:319–336. doi:10.1016/j.jcz.2012.09.003

    Google Scholar 

  • Kiernan DA, Hertzler PL (2006) Muscle development in dendrobranchiate shrimp, with comparison with Artemia. Evol Dev 8:537–549. doi:10.1111/j.1525-142X.2006.00126.x

    PubMed  Google Scholar 

  • Kirk MD, Govind CK (1983) Innervation and motor patterns of the abdominal superficial flexor muscles in larval lobsters. J Neurobiol 14:399–405. doi:10.1002/neu.480140508

    CAS  PubMed  Google Scholar 

  • Kirk MD, Govind CK (1992) Early innervation of abdominal swimmeret muscles in developing lobsters. J Exp Zool 261:298–309. doi:10.1002/jez.1402610309

    CAS  PubMed  Google Scholar 

  • Klagges BRE, Heimbeck G, Godenschwege TA, Hofbauer A, Pflugfelder GO, Reifegerste R, Reisch D, Schaupp M, Buchner S, Buchner E (1996) Invertebrate synapsins: a single gene codes for several isoforms in Drosophila. J Neurosci 16:3154–3165

    CAS  PubMed  Google Scholar 

  • Knorp NE, Dorn NJ (2014) Dissimilar numerical responses of macroinvertebrates to disturbance from drying and predatory sunfish. Freshwater Biology 59:1378–1388

    Google Scholar 

  • Kreissl S, Uber A, Harzsch S (2008) Muscle precursor cells in the developing limbs of two isopods (Crustacea, Peracarida): an immunohistochemical study using a novel monoclonal antibody against myosin heavy chain. Dev Genes Evol 218:253–265. doi:10.1007/s00427-008-0216-1

    CAS  PubMed Central  PubMed  Google Scholar 

  • Land MF, Nilsson D-E (2012) Animal eyes, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Lang F (1977) Synaptic and septate neuromuscular junctions in embryonic lobster muscle. Nature 268:458–460. doi:10.1038/268458a0

    CAS  PubMed  Google Scholar 

  • Laverack MS (1988) Larval locomotion, sensors, growth and their implication for the nervous system. Symp Zool Soc 59:103–122

    Google Scholar 

  • Leone FA, Bezerra TMS, Garçon DP, Lucena MN, Pinto MR, Fontes CFL, McNamara JC (2014) Modulation by K+ plus NH4+ of microsomal (Na+, K+)-ATPase activity in selected ontogenetic stages of the diadromous river shrimp Macrobrachium amazonicum (Decapoda, Palaemonidae). PLoS ONE 9:e89625. doi:10.1371/journal.pone.0089625

    PubMed Central  PubMed  Google Scholar 

  • Lignot J, Charmantier G (2001) Immunolocalization of NA+, K+-ATPase in the branchial cavity during the early development of the European lobster Homarus gammarus (Crustacea, Decapoda). J Histochem Cytochem 49:1013–1023. doi:10.1177/002215540104900809

    CAS  PubMed  Google Scholar 

  • Lignot J, Susanto GN, Charmantier-Daures M, Charmantier G (2005) Immunolocalization of Na+, K+-ATPase in the branchial cavity during the early development of the crayfish Astacus leptodactylus (Crustacea, Decapoda). Cell Tissue Res 319:331–339. doi:10.1007/s00441-004-1015-2

    CAS  PubMed  Google Scholar 

  • Liubicich DM, Serano JM, Pavlopoulos A, Kontarakis Z, Protas ME, Kwan E, Chatterjee S, Tran KD, Averof M, Patel NH (2009) Knockdown of Parhyale Ultrabithorax recapitulates evolutionary changes in crustacean appendage morphology. Proc Natl Acad Sci U S A 106:13892–13896. doi:10.1073/pnas.0903105106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lnenicka GA, Hong SJ, Combatti M, LePage S (1991) Activity-dependent development of synaptic varicosities at crayfish motor terminals. J Neurosci 11:1040–1048

    CAS  PubMed  Google Scholar 

  • Loesel R, Wolf H, Kenning M, Harzsch S, Sombke A (2013) Architectural principles and evolution of the arthropod central nervous system. In: Minelli A, Boxshall G, Fusco G (eds) Arthropod biology and evolution. Springer Berlin Heidelberg, Berlin, pp 299–342

    Google Scholar 

  • Lundberg U (2004) Behavioural elements of the noble crayfish, Astacus astacus (Linnaeus, 1758). Crustaceana 77:137–162

    Google Scholar 

  • Macmillan DL (1997) Development of the motor system in the limbs of larval lobsters (Homarus americanus). Biol Bull 193:257–258

    CAS  PubMed  Google Scholar 

  • Martin P, Kohlmann K, Scholtz G (2007) The parthenogenetic Marmorkrebs (marbled crayfish) produces genetically uniform offspring. Naturwissenschaften 94:843–846

    CAS  PubMed  Google Scholar 

  • Martin P, Shen H, Füllner G, Scholtz G (2010) The first record of the parthenogenetic Marmorkrebs (Decapoda, Astacida, Cambaridae) in the wild in Saxony (Germany) raises the question of its actual threat to European freshwater ecosystems. Aquatic Invasions 5:397–403

    Google Scholar 

  • Mellon D (1999) Muscle restructuring in crustaceans: myofiber death, transfiguration and rebirth. Am Zool 39:527–540. doi:10.1093/icb/39.3.527

    Google Scholar 

  • Mellon D (2007) Combining dissimilar senses: central processing of hydrodynamic and chemosensory inputs in aquatic crustaceans. Biol Bull 213:1–11

    PubMed  Google Scholar 

  • Mellon D, Alones V (1993) Cellular organization and growth-related plasticity of the crayfish olfactory midbrain. Microsc Res Tech 24:231–259. doi:10.1002/jemt.1070240304

    PubMed  Google Scholar 

  • Melzer RR, Diersch R, Nicastro D, Smola U (1997) Compound eye evolution: highly conserved retinula and cone cell patterns indicate a common origin of the insect and crustacean ommatidium. Naturwissenschaften 84:542–544. doi:10.1007/s001140050442

    CAS  Google Scholar 

  • Melzer RR, Michalke C, Smola U (2000) Walking on insect paths? Early ommatidial development in the compound eye of the ancestral crustacean, Triops cancriformis. Naturwissenschaften 87:308–311. doi:10.1007/s001140050727

    CAS  PubMed  Google Scholar 

  • Meyer-Rochow VB (1975) Larval and adult eye of the Western rock lobster (Panulirus longipes). Cell Tissue Res 162:439–457. doi:10.1007/BF00209345

    CAS  PubMed  Google Scholar 

  • Meyer-Rochow VB, Towers D, Ziedins I (1989) Growth patterns in the eye of Petrolisthes elongatus (Crustacea; Decapoda; Anomura). Exp Biol 48:329–340

    Google Scholar 

  • Mulloney B, Hall WM (1991) Neurons with histamine-like immunoreactivity in the segmental and stomatogastric nervous systems of the crayfish Pacifastacus leniusculus and the lobster Homarus americanus. Cell Tissue Res 266:197–207. doi:10.1007/BF00678725

    CAS  PubMed  Google Scholar 

  • Murphy BF, Larimer JL (1991) The effect of various neurotransmitters and some of their agonists and antagonists on the crayfish abdominal positioning system. Comp Biochem Physiol C 100:687–698. doi:10.1016/0742-8413(91)90062-X

    CAS  PubMed  Google Scholar 

  • Mykles DL (1999) Proteolytic processes underlying molt-induced claw muscle atrophy in decapod crustaceans. Am Zool 39:541–551. doi:10.1093/icb/39.3.541

    CAS  Google Scholar 

  • Nässel DR (1976) The retina and retinal projection on the lamina ganglionaris of the crayfish Pacifastacus leniusculus (Dana). J Comp Neurol 167:341–359. doi:10.1002/cne.901670305

    Google Scholar 

  • Nässel DR (1977) Types and arrangements of neurons in the crayfish optic lamina. Cell Tissue Res 179:45–75. doi:10.1007/BF00278462

    PubMed  Google Scholar 

  • Nilsson D-E, Osorio D (1998) Homology and parallelism in arthropod sensory processing. In: Thomas RH, Fortey RA (eds) Arthropod relationships. Springer, Netherlands, pp 333–347

    Google Scholar 

  • Noonin C, Lin X, Jiravanichpaisal P, Söderhäll K, Söderhäll I (2012) Invertebrate hematopoiesis: an anterior proliferation center as a link between the hematopoietic tissue and the brain. Stem Cells Dev 21:3173–3186. doi:10.1089/scd.2012.0077

    CAS  PubMed  Google Scholar 

  • Osorio D (2007) Spam and the evolution of the fly’s eye. Bioessays 29:111–115. doi:10.1002/bies.20533

    PubMed  Google Scholar 

  • Page DT (2004) A mode of arthropod brain evolution suggested by Drosophila commissure development. Evol Dev 6:25–31. doi:10.1111/j.1525-142X.2004.04003.x

    PubMed  Google Scholar 

  • Patel NH, Kornberg TB, Goodman CS (1989) Expression of engrailed during segmentation in grasshopper and crayfish. Development 107:201–212

    CAS  PubMed  Google Scholar 

  • Paululat A, Breuer S, Renkawitz-Pohl R (1999a) Determination and development of the larval muscle pattern in Drosophila melanogaster. Cell Tissue Res 296:151–160. doi:10.1007/s004410051276

    CAS  PubMed  Google Scholar 

  • Paululat A, Holz A, Renkawitz-Pohl R (1999b) Essential genes for myoblast fusion in Drosophila embryogenesis. Mech Dev 83:17–26. doi:10.1016/S0925-4773(99)00029-5

    CAS  PubMed  Google Scholar 

  • Paulus HF (2000) Phylogeny of the Myriapoda – Crustacea – Insecta: a new attempt using photoreceptor structure. J Zool Syst Evol Res 38:189–208. doi:10.1046/j.1439-0469.2000.383152.x

    Google Scholar 

  • Pavlopoulos A, Kontarakis Z, Liubicich DM, Serano JM, Akam M, Patel NH, Averof M (2009) Probing the evolution of appendage specialization by Hox gene misexpression in an emerging model crustacean. Proc Natl Acad Sci U S A 106:13897–13902. doi:10.1073/pnas.0902804106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pearce J, Govind CK, Meiss DE (1985) Growth-related features of lobster neuromuscular terminals. Dev Brain Res 21:215–228. doi:10.1016/0165-3806(85)90210-X

    Google Scholar 

  • Pick L, Heffer A (2012) Hox gene evolution: multiple mechanisms contributing to evolutionary novelties. Ann N Y Acad Sci 1256:15–32. doi:10.1111/j.1749-6632.2011.06385.x

    PubMed  Google Scholar 

  • Price AL, Patel NH (2008) Investigating divergent mechanisms of mesoderm development in arthropods: the expression of Ph-twist and Ph-mef2 in Parhyale hawaiensis. J Exp Zool 310B:24–40. doi:10.1002/jez.b.21135

    CAS  Google Scholar 

  • Price AL, Modrell MS, Hannibal RL, Patel NH (2010) Mesoderm and ectoderm lineages in the crustacean Parhyale hawaiensis display intra-germ layer compensation. Dev Biol 341:256–266. doi:10.1016/j.ydbio.2009.12.006

    CAS  PubMed  Google Scholar 

  • Pulver SR, Marder E (2002) Neuromodulatory complement of the pericardial organs in the embryonic lobster, Homarus americanus. J Comp Neurol 451:79–90. doi:10.1002/cne.10331

    CAS  PubMed  Google Scholar 

  • Rathke H (1829) Ueber die Bildung und Entwicklung des Flusskrebses. Verlag Leopold Voss, Leipzig

    Google Scholar 

  • Reichenbach H (1888) Zur Embryonalentwicklung des Flußkrebses. Abh Senckenb Naturforsch Ges 14:1–137

    Google Scholar 

  • Richter S (2002) The tetraconata concept: hexapod-crustacean relationships and the phylogeny of Crustacea. Org Divers Evol 2:217–237. doi:10.1078/1439-6092-00048

    Google Scholar 

  • Richter S, Stein M, Frase T, Szucsich NU (2013) The arthropod head. In: Boxshall G, Fusco G, Minelli A (eds) Arthropod biology and evolution. Springer, Berlin, pp 223–240

    Google Scholar 

  • Rieger V, Harzsch S (2008) Embryonic development of the histaminergic system in the ventral nerve cord of the Marbled Crayfish (Marmorkrebs). Tissue Cell 40:113–126. doi:10.1016/j.tice.2007.10.004

    CAS  PubMed  Google Scholar 

  • Rotllant G, Kleijn DD, Charmantier-Daures M, Charmantier G, Herp FV (1993) Localization of crustacean hyperglycemic hormone (CHH) and gonad-inhibiting hormone (GIH) in the eyestalk of Homarus gammarus larvae by immunocytochemistry and in situ hybridization. Cell Tissue Res 271:507–512. doi:10.1007/BF02913734

    CAS  Google Scholar 

  • Rotllant G, Charmantier-Daures M, Trilles JP, Charmantier G (1994) Ontogeny of the sinus gland and of the organ of Bellonci in larvae and postlarvae of the European lobster Homarus gammarus. Invertebr Reprod Dev 26:13–22. doi:10.1080/07924259.1994.9672396

    Google Scholar 

  • Rotllant G, Charmantier-Daures M, De Kleijn D, Charmantier G, Van Herp F (1995) Ontogeny of neuroendocrine centers in the eyestalk of Homarus gammarus embryos: an anatomical and hormonal approach. Invertebr Reprod Dev 27:233–245. doi:10.1080/07924259.1995.9672453

    CAS  Google Scholar 

  • Roy S, VijayRaghavan K (1999) Muscle pattern diversification in Drosophila: the story of imaginal myogenesis. Bioessays 21:486–498. doi:10.1002/(SICI)1521-1878(199906)21:6<486::AID-BIES5>3.0.CO;2-M

    CAS  PubMed  Google Scholar 

  • Ruehl CB, Trexler JC (2013) A suite of prey traits determine predator and nutrient enrichment effects in a tri-trophic food chain. Ecosphere 4:art75

    Google Scholar 

  • Sandeman RE, Sandeman DC (1990) Development and identified neural systems in the crayfish brain. In: Wiese K, Krenz W-D, Tautz J, Reichert H, Mulloney B (eds) Frontiers in Crustacean neurobiology. Birkhäuser, Basel, pp 498–508

    Google Scholar 

  • Sandeman RE, Sandeman DC (1991) Stages in the development of the embryo of the fresh-water crayfish Cherax destructor. Roux’s Arch Dev Biol 200:27–37. doi:10.1007/BF02457638

    Google Scholar 

  • Sandeman RE, Sandeman DC (1996) Pre- and postembryonic development, growth and turnover of olfactory receptor neurones in crayfish antennules. J Exp Biol 199:2409–2418

    PubMed  Google Scholar 

  • Sandeman RE, Sandeman DC (2000) “Impoverished” and “enriched” living conditions influence the proliferation and survival of neurons in crayfish brain. J Neurobiol 45:215–226. doi:10.1002/1097-4695(200012)45:4<215::AID-NEU3>3.0.CO;2-X

    CAS  PubMed  Google Scholar 

  • Sandeman R, Sandeman D (2003) Development, growth, and plasticity in the crayfish olfactory system. Microsc Res Tech 60:266–277

    PubMed  Google Scholar 

  • Sandeman RE, Sandeman DC (2013) Development, growth, and plasticity in the crayfish olfactory system. Microsc Res Tech 60:266–277. doi:10.1002/jemt.10266

    Google Scholar 

  • Sandeman DC, Sandeman RE, Derby CD, Schmidt M (1992) Morphology of the brain of crayfish, crabs, and spiny lobsters: a common nomenclature for homologous structures. Biol Bull 183:304–326

    Google Scholar 

  • Sandeman DC, Benton JL, Beltz BS (2009) An identified serotonergic neuron regulates adult neurogenesis in the crustacean brain. Dev Neurobiol 69:530–545. doi:10.1002/dneu.20722

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sandeman DC, Bazin F, Beltz BS (2011) Adult neurogenesis: examples from the decapod crustaceans and comparisons with mammals. Arthropod Struct Dev 40:258–275. doi:10.1016/j.asd.2011.03.001

    PubMed Central  PubMed  Google Scholar 

  • Sandeman DC, Kenning M, Harzsch S (2014) Adaptive trends in malacostracan brain form and function related to behavior. In: The Natural history of crustacea Vol. 3 - Nervous systems & Control of behavior (eds. C. Derby, M. Thiel). Oxford University Press, New York: pp. 11–48

    Google Scholar 

  • Sandeman DC, Benton JL, Beltz BS (2015) Persistent neurogenesis in the decapod crustaceans. In: Schmidt-Rhaesa A, Harzsch S, Purschke G (eds) Structure and evolution of invertebrate nervous systems. Oxford University Press, p NN

    Google Scholar 

  • Schachtner J, Schmidt M, Homberg U (2005) Organization and evolutionary trends of primary olfactory brain centers in Tetraconata (Crustacea+Hexapoda). Arthropod Struct Dev 34:257–299. doi:10.1016/j.asd.2005.04.003

    Google Scholar 

  • Schmidt M (1997) Continuous neurogenesis in the olfactory brain of adult shore crabs, Carcinus maenas. Brain Res 762:131–143. doi:10.1016/S0006-8993(97)00376-4

    CAS  PubMed  Google Scholar 

  • Schmidt M (2001) Neuronal differentiation and long-term survival of newly generated cells in the olfactory midbrain of the adult spiny lobster, Panulirus argus. J Neurobiol 48:181–203. doi:10.1002/neu.1050

    CAS  PubMed  Google Scholar 

  • Schmidt M (2007a) Identification of putative neuroblasts at the base of adult neurogenesis in the olfactory midbrain of the spiny lobster, Panulirus argus. J Comp Neurol 503:64–84. doi:10.1002/cne.21366

    PubMed  Google Scholar 

  • Schmidt M (2007b) The olfactory pathway of decapod crustaceans – an invertebrate model for life-long neurogenesis. Chem Senses 32:365–384. doi:10.1093/chemse/bjm008

    PubMed  Google Scholar 

  • Schmidt M (2014) Adult neurogenesis in crustaceans. In: The Natural history of crustacea Vol. 3 - Nervous systems & Control of behavior (eds. C. Derby, M. Thiel). Oxford University Press, New York: pp. 175–206

    Google Scholar 

  • Schmidt M, Harzsch S (1999) Comparative analysis of neurogenesis in the central olfactory pathway of adult decapod crustaceans by in vivo BrdU labeling. Biol Bull 196:127–136

    Google Scholar 

  • Schmidt M, Mellon D (2011) Neuronal processing of chemical information in crustaceans. In: Breithaupt T, Thiel M (eds) Chemical communication in Crustaceans. Springer, New York, pp 123–147

    Google Scholar 

  • Schneider H, Budhiraja P, Walter I, Beltz BS, Peckol E, Kravitz EA (1996) Developmental expression of the octopamine phenotype in lobsters, Homarus americanus. J Comp Neurol 371:3–14. doi:10.1002/(SICI)1096-9861(19960715)371:1<3::AID-CNE1>3.0.CO;2-7

    CAS  PubMed  Google Scholar 

  • Scholtz G (1990) The formation, differentiation and segmentation of the post-naupliar germ band of the amphipod Gammarus pulex L. (Crustacea, Malacostraca, Peracarida). Proc R Soc B Biol Sci 239:163–211

    Google Scholar 

  • Scholtz G (1992) Cell lineage studies in the crayfish Cherax destructor (Crustacea, Decapoda): germ band formation, segmentation, and early neurogenesis. Roux’s Arch Dev Biol 202:36–48. doi:10.1007/BF00364595

    Google Scholar 

  • Scholtz G (1993) Teloblasts in decapod embryos: an embryonic character reveals the monophyletic origin of freshwater crayfishes (Crustacea, Decapoda). Zool Anz 230:45–54

    Google Scholar 

  • Scholtz G (1995a) Expression of the engrailed gene reveals nine putative segment-anlagen in the embryonic pleon of the freshwater crayfish Cherax destructor (Crustacea, Malacostraca, Decapoda). Biol Bull 188:157–165

    Google Scholar 

  • Scholtz G (1995b) Head segmentation in Crustacea – an immunocytochemical study. Zool-Anal Compl Syst 98:104–114

    Google Scholar 

  • Scholtz G (1998) Cleavage, germ band formation and head segmentation: the ground pattern of the Euarthropoda. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Springer, Netherlands, pp 317–332

    Google Scholar 

  • Scholtz G (2000) Evolution of the nauplius stage in malacostracan crustaceans. J Zool Syst Evol Res 38:175–187. doi:10.1046/j.1439-0469.2000.383151.x

    Google Scholar 

  • Scholtz G (2014) Astacus fluviatilis Wachsmodellserie zur Entwicklung des Flusskrebses. Zoologische Schriften der HU Berlin pp. 41–52

    Google Scholar 

  • Scholtz G, Dohle W (1996) Cell lineage and cell fate in crustacean embryos-a comparative approach. Int J Dev Biol 40:211–220

    CAS  PubMed  Google Scholar 

  • Scholtz G, Edgecombe GD (2005) Heads, Hox and the phylogenetic position of trilobites. In: Koenemann S, Jenner RA (eds) Crustacea and arthropod relationships. CRC Press, Boca Raton, pp 139–166

    Google Scholar 

  • Scholtz G, Edgecombe GD (2006) The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Dev Genes Evol 216:395–415. doi:10.1007/s00427-006-0085-4

    PubMed  Google Scholar 

  • Scholtz G, Gerberding M (2002) Cell lineage of crustacean neuroblasts. In: Wiese K (ed) The Crustacean nervous system. Springer, Heidelberg, pp 404–416

    Google Scholar 

  • Scholtz G, Kawai T (2002) Aspects of embryonic and postembryonic development of the Japanese freshwater crayfish Cambaroides japonicus (Crustacea, Decapoda) including a hypothesis on the evolution of maternal care in the Astacida. Acta Zool (Stockholm) 83:203–212. doi:10.1046/j.1463-6395.2002.00113.x

    Google Scholar 

  • Scholtz G, Wolff C (2013) Arthropod embryology: cleavage and germ band development. In: Boxshall G, Minelli A, Fusco G (eds) Arthropod biology and evolution. Springer, Berlin/Heidelberg, pp 63–89

    Google Scholar 

  • Scholtz G, Patel NH, Dohle W (1994) Serially homologous engrailed stripes are generated via different cell lineages in the germ band of amphipod crustaceans (Malacostraca, Peracarida). Int J Dev Biol 38:471–478

    CAS  PubMed  Google Scholar 

  • Scholtz G, Braband A, Tolley L, Reimann A, Mittmann B, Lukhaup C, Steuerwald F, Vogt G (2003) Parthenogenesis in an outsider crayfish. Nature 421:806–806

    CAS  PubMed  Google Scholar 

  • Scholz NL, Chang ES, Graubard K, Truman JW (1998) The NO/cGMP pathway and the development of neural networks in postembryonic lobsters. J Neurobiol 34:208–226

    CAS  PubMed  Google Scholar 

  • Schram FR, Koenemann S (2004) Developmental genetics and arthropod evolution: on body regions of Crustacea. In: Scholtz G (ed) Evolutionary developmental biology of Crustacea. AA Balkema Publishers, Lisse, pp 75–92

    Google Scholar 

  • Seitz R, Vilpoux K, Hopp U, Harzsch S, Maier G (2005) Ontogeny of the Marmorkrebs (marbled crayfish): a parthenogenetic crayfish with unknown origin and phylogenetic position. J Exp Zool 303A:393–405. doi:10.1002/jez.a.143

    Google Scholar 

  • Seneviratna D, Taylor HH (2006) Ontogeny of osmoregulation in embryos of intertidal crabs (Hemigrapsus sexdentatus and H. crenulatus, Grapsidae, Brachyura): putative involvement of the embryonic dorsal organ. J Exp Biol 209:1487–1501. doi:10.1242/jeb.02167

    CAS  PubMed  Google Scholar 

  • Sintoni S, Fabritius-Vilpoux K, Harzsch S (2007) The Engrailed-expressing secondary head spots in the embryonic crayfish brain: examples for a group of homologous neurons in Crustacea and Hexapoda? Dev Genes Evol 217:791–799. doi:10.1007/s00427-007-0189-5

    PubMed  Google Scholar 

  • Sintoni S, Benton JL, Beltz BS, Hansson BS, Harzsch S (2012) Neurogenesis in the central olfactory pathway of adult decapod crustaceans: development of the neurogenic niche in the brains of procambarid crayfish. Neural Dev 7:1–26. doi:10.1186/1749-8104-7-1

    PubMed Central  PubMed  Google Scholar 

  • Song C-K, Johnstone LM, Schmidt M, Derby CD, Edwards DH (2007) Social domination increases neuronal survival in the brain of juvenile crayfish Procambarus clarkii. J Exp Biol 210:1311–1324. doi:10.1242/jeb.02758

    PubMed  Google Scholar 

  • Spindler KD, Jaros PP, Weidemann W (2000) Arthropoda - Crustacea. In: Adiyodi KG, Adiyodi RG (eds) Reproductive biology of invertebrates. Wiley, Chichester, pp 243–269

    Google Scholar 

  • Stavenga DG, Hardie RC (1989) Facets of vision, 1st edn. Springer, Berlin

    Google Scholar 

  • Stephens PJ, Govind CK (1981) Peripheral innervation fields of single lobster motoneurons defined by synapse elimination during development. Brain Res 212:476–480. doi:10.1016/0006-8993(81)90481-9

    CAS  PubMed  Google Scholar 

  • Steullet P, Cate HS, Derby CD (2000a) A spatiotemporal wave of turnover and functional maturation of olfactory receptor neurons in the spiny lobster Panulirus argus. J Neurosci 20:3282–3294

    CAS  PubMed  Google Scholar 

  • Steullet P, Cate HS, Michel WC, Derby CD (2000b) Functional units of a compound nose: aesthetasc sensilla house similar populations of olfactory receptor neurons on the crustacean antennule. J Comp Neurol 418:270–280. doi:10.1002/(SICI)1096-9861(20000313)418:3<270::AID-CNE3>3.0.CO;2-G

    CAS  PubMed  Google Scholar 

  • Stollewerk A, Chipman AD (2006) Neurogenesis in myriapods and chelicerates and its importance for understanding arthropod relationships. Integr Comp Biol 46:195–206. doi:10.1093/icb/icj020

    PubMed  Google Scholar 

  • Stollewerk A, Simpson P (2005) Evolution of early development of the nervous system: a comparison between arthropods. Bioessays 27:874–883. doi:10.1002/bies.20276

    PubMed  Google Scholar 

  • Stollewerk A, Tautz D, Weller M (2003) Neurogenesis in the spider: new insights from comparative analysis of morphological processes and gene expression patterns. Arthropod Struct Dev 32:5–16. doi:10.1016/S1467-8039(03)00041-0

    PubMed  Google Scholar 

  • Strausfeld NJ (2012) Arthropod brains: evolution, functional elegance, and historical significance. Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  • Strausfeld NJ, Nässel DR (1981) Neuroarchitecture of brain regions that subserve the compound eyes of Crustacea and insects. In: Autrum H (ed) Comparative physiology and evolution of vision in invertebrates: B: invertebrate visual centers and behavior I. Springer-Verlag, Berlin, pp 1–132

    Google Scholar 

  • Strausfeld NJ, Douglas J, Campbell H, Higgins C (2006) Parallel processing in the optic lobes of flies and the occurrence of motion computing circuits. In: Warrant E, Nilsson D-E (eds) Invertebrate vision. Cambridge University Press, Cambridge, pp 349–399

    Google Scholar 

  • Sullivan JM, Beltz BS (2005) Adult neurogenesis in the central olfactory pathway in the absence of receptor neuron turnover in Libinia emarginata. Eur J Neurosci 22:2397–2402. doi:10.1111/j.1460-9568.2005.04449.x

    PubMed Central  PubMed  Google Scholar 

  • Sullivan JM, Herberholz J (2013) Structure of the nervous system: general design and gross anatomy. In: Watling L, Thiel M (eds). Functional morphology and diversity. Oxford University Press, New York, USA, pp 451–484

    Google Scholar 

  • Sullivan JM, Macmillan DL (2001) Embryonic and postembryonic neurogenesis in the ventral nerve cord of the freshwater crayfish Cherax destructor. J Exp Zool 290:49–60. doi:10.1002/jez.1035

    CAS  PubMed  Google Scholar 

  • Sullivan JM, Benton JL, Beltz BS (2000) Serotonin depletion in vivo inhibits the branching of olfactory projection neurons in the lobster deutocerebrum. J Neurosci 20:7716–7721

    CAS  PubMed  Google Scholar 

  • Sullivan JM, Benton JL, Sandeman DC, Beltz BS (2007a) Adult neurogenesis: a common strategy across diverse species. J Comp Neurol 500:574–584. doi:10.1002/cne.21187

    PubMed Central  PubMed  Google Scholar 

  • Sullivan JM, Sandeman DC, Benton JL, Beltz BS (2007b) Adult neurogenesis and cell cycle regulation in the crustacean olfactory pathway: from glial precursors to differentiated neurons. J Mol Hist 38:527–542. doi:10.1007/s10735-007-9112-7

    CAS  Google Scholar 

  • Susanto GN, Charmantier G (2000) Ontogeny of osmoregulation in the crayfish Astacus leptodactylus. Physiol Biochem Zool 73:169–176. doi:10.1086/316736

    CAS  PubMed  Google Scholar 

  • Susanto GN, Charmantier G (2001) Crayfish freshwater adaptation starts in eggs: ontogeny of osmoregulation in embryos of Astacus leptodactylus. J Exp Zool 289:433–440. doi:10.1002/jez.1024

    CAS  PubMed  Google Scholar 

  • Tierney AJ, Andrews K, Happer KR, White MKM (2013) Dear enemies and nasty neighbors in crayfish: effects of social status and sex on responses to familiar and unfamiliar conspecifics. Behav Process 99:47–51. doi:10.1016/j.beproc.2013.06.001

    CAS  Google Scholar 

  • Ungerer P, Scholtz G (2008) Filling the gap between identified neuroblasts and neurons in crustaceans adds new support for Tetraconata. Proc R Soc B 275:369–376. doi:10.1098/rspb.2007.1391

    PubMed Central  PubMed  Google Scholar 

  • Ungerer P, Geppert M, Wolff C (2011) Axogenesis in the central and peripheral nervous system of the amphipod crustacean Orchestia cavimana. Integr Zool 6:28–44. doi:10.1111/j.1749-4877.2010.00227.x

    PubMed  Google Scholar 

  • Ungerer P, Eriksson BJ, Stollewerk A (2012) Unravelling the evolution of neural stem cells in arthropods: notch signalling in neural stem cell development in the crustacean Daphnia magna. Dev Biol 371:302–311. doi:10.1016/j.ydbio.2012.08.025

    CAS  PubMed  Google Scholar 

  • Vilpoux K, Sandeman RE, Harzsch S (2006) Early embryonic development of the central nervous system in the Australian crayfish and the Marbled crayfish (Marmorkrebs). Dev Genes Evol 216:209–223. doi:10.1007/s00427-005-0055-2

    CAS  PubMed  Google Scholar 

  • Vogt G (2008a) Investigation of hatching and early post-embryonic life of freshwater crayfish by in vitro culture, behavioral analysis, and light and electron microscopy. J Morphol 269:790–811. doi:10.1002/jmor.10622

    PubMed  Google Scholar 

  • Vogt G (2008b) How to minimize formation and growth of tumours: potential benefits of decapod crustaceans for cancer research. Int J Cancer 123:2727–2734. doi:10.1002/ijc.23947

    CAS  PubMed  Google Scholar 

  • Vogt G (2010) Suitability of the clonal marbled crayfish for biogerontological research: a review and perspective, with remarks on some further crustaceans. Biogerontology 11:643–669

    PubMed  Google Scholar 

  • Vogt G (2012) Ageing and longevity in the Decapoda (Crustacea): a review. Zool Anz 251:1–25

    Google Scholar 

  • Vogt G, Tolley L (2004) Brood care in freshwater crayfish and relationship with the offspring’s sensory deficiencies. J Morphol 262:566–582

    PubMed  Google Scholar 

  • Vogt G, Tolley L, Scholtz G (2004) Life stages and reproductive components of the Marmorkrebs (marbled crayfish), the first parthenogenetic decapod crustacean. J Morphol 261:286–311. doi:10.1002/jmor.10250

    PubMed  Google Scholar 

  • Walossek D (1999) On the Cambrian diversity of Crustacea. In: Von Vaupel Klein JC, Schram FR (eds) Crustaceans and the biodiversity crisis. Brill Academic Pub, Leiden, pp 3–27

    Google Scholar 

  • Warrant E, Nilsson D-E (eds) (2006) Invertebrate vision, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Webster SG, Dircksen H (1991) Putative molt-inhibiting hormone in larvae of the shore crab Carcinus maenas L.: an immunocytochemical approach. Biol Bull 180:65. doi:10.2307/1542429

    CAS  Google Scholar 

  • Wehner R (1972) Information processing in the visual systems of arthropods. Springer Berlin Heidelberg, Berlin

    Google Scholar 

  • West JM (1999) Ca2+-activated force production and calcium handling by the sarcoplasmic reticulum of crustacean muscles during molt-induced atrophy. Am Zool 39:552–569. doi:10.1093/icb/39.3.552

    CAS  Google Scholar 

  • Weygoldt P (1961) Beitrag zur Kenntnis der Ontogenie der Dekapoden: embryologische Untersuchungen an Palaemonetes varians (Leach). Zool Jahrb Abt Anat Ontog Tiere 79:223–270

    Google Scholar 

  • Weygoldt P (1994) Le développement embryonnaire. In: Grassé P-G (ed) Traité de Zoologie. Masson, Paris, pp 807–889

    Google Scholar 

  • Whitington PM (1995) Conservation versus change in early axogenesis in arthropod embryos: a comparison between myriapods, crustaceans, and insects. In: Breidbach O, Kutsch W (eds) The nervous systems of invertebrates: an evolutionary and comparative approach. Birkhäuser Verlag, Basel, pp 181–220

    Google Scholar 

  • Whitington PM (1996) Evolution of neural development in the arthropods. Semin Cell Dev Biol 7:605–614. doi:10.1006/scdb.1996.0074

    Google Scholar 

  • Whitington FR (2004) The development of the crustacean nervous system. In: Scholtz G (ed) Evolutionary developmental biology of Crustacea. AA Balkema Publishers, Lisse, pp 135–167

    Google Scholar 

  • Whitington PM, Bacon JP (1998) The organization and development of the arthropod ventral nerve cord: insights into arthropod relationships. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Springer, Netherlands, pp 349–367

    Google Scholar 

  • Whitington PM, Mayer G (2011) The origins of the arthropod nervous system: insights from the Onychophora. Arthropod Struct Dev 40:193–209. doi:10.1016/j.asd.2011.01.006

    PubMed  Google Scholar 

  • Whitington PM, Leach D, Sandeman RE (1993) Evolutionary change in neural development within the arthropods: axonogenesis in the embryos of two crustaceans. Development 118:449–461

    CAS  PubMed  Google Scholar 

  • Wiese K (ed) (2001) The Crustacean nervous system, 2nd edn. Springer, Berlin

    Google Scholar 

  • Wiese K (ed) (2002) Crustacean experimental systems in neurobiology. Springer, Berlin

    Google Scholar 

  • Wildt M, Harzsch S (2002) A new look at an old visual system: structure and development of the compound eyes and optic ganglia of the brine shrimp Artemia saline Linnaeus, 1758 (Branchiopoda, Anostraca). J Neurobiol 52:117–132. doi:10.1002/neu.10074

    PubMed  Google Scholar 

  • Wolff C, Scholtz G (2002) Cell lineage, axis formation, and the origin of germ layers in the amphipod crustacean Orchestia cavimana. Dev Biol 250:44–58

    CAS  PubMed  Google Scholar 

  • Zehnder H (1934a) Über die Embryonalentwicklung des Flusskrebses. Teil 1: Die ersten Stadien der Embryonalentwicklung von Astacus fluviatilis (Rond.) L. und Astacus torrentium (Schrank) vom unbefruchteten Ei bis zur Gastrulation. Acta Zool 15:261–344. doi:10.1111/j.1463-6395.1934.tb00659.x

    Google Scholar 

  • Zehnder H (1934b) Über die Embryonalentwicklung des Flusskrebses. Teil 2: Die Ausbildung der äußeren Körperform von Astacus fluviatilis (Rond.) L. und Astacus torrentium (Schrank) von der Gastrulation bis zum entwickelten Tier. Acta Zool 15:346–408. doi:10.1111/j.1463-6395.1934.tb00659.x

    Google Scholar 

  • Zhang Y, Allodi S, Sandeman DC, Beltz BS (2009) Adult neurogenesis in the crayfish brain: proliferation, migration, and possible origin of precursor cells. Dev Neurobiol 69:415–436. doi:10.1002/dneu.20717

    PubMed Central  PubMed  Google Scholar 

  • Zhang Y, Benton JL, Beltz BS (2011) 5-HT receptors mediate lineage-dependent effects of serotonin on adult neurogenesis in Procambarus clarkii. Neural Dev 6:1–22. doi:10.1186/1749-8104-6-2

    Google Scholar 

  • Zieger E, Bräunig P, Harzsch S (2013) A developmental study of serotonin-immunoreactive neurons in the embryonic brain of the Marbled Crayfish and the Migratory Locust: evidence for a homologous protocerebral group of neurons. Arthropod Struct Dev 42:507–520. doi:10.1016/j.asd.2013.08.004

    PubMed  Google Scholar 

Download references

Acknowledgements

SH gratefully acknowledges five of his former students for their dedicated and gifted work on crayfish neurogenesis, in chronological order: Kathia Fabritius-Vilpoux, Verena Rieger, Silvia Sintoni, Elisabeth Zieger, and Caroline Viertel. SH also wishes to thank Renate Sandeman for a short but effective cooperation on crayfish development. We are indebted to Gerhard Scholtz for commenting on the draft of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Harzsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Harzsch, S., Krieger, J., Faulkes, Z. (2015). “Crustacea”: Decapoda – Astacida. In: Wanninger, A. (eds) Evolutionary Developmental Biology of Invertebrates 4. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1853-5_4

Download citation

Publish with us

Policies and ethics