Skip to main content

Abstract

Acoelomorpha, comprising Acoela and Nemertodermatida, and Xenoturbellida (with one single hitherto described species, Xenoturbella bocki) are simple, aquatic, acoelomate worms that measure between 100 μm and 1 cm. Acoelomorpha and Xenoturbella are found to cluster together as the monophyletic Xenacoelomorpha in some recent molecular phylogenetic analyses. With only few exceptions, all species are marine, with most of them living in the interstitial environment. Xenoturbellids and acoelomorphs possess a simple nervous system that generally is a basiepidermal nerve net; however, in some cases this net is condensed into basiepidermal neurite bundles at different parts of the body or is submerged under the epidermis where condensed brains and submuscular cords are formed. Some Acoela possess eye spots, while most nemertodermatids, Xenoturbella, and Acoela lack eyes. Recent internal phylogenetic analyses suggest that eyes were absent from the ground pattern of Acoelomorpha. A prominent gravitational sensory organ, the statocyst, is present in all xenacoelomorph taxa, albeit with differing ultrastructure.

Chapter vignette artwork by Brigitte Baldrian. © Brigitte Baldrian and Andreas Wanninger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achatz JG, Martinez P (2012) The nervous system of Isodiametra pulchra (Acoela) with a discussion on the neuroanatomy of the Xenacoelomorpha and its evolutionary implications. Front Zool 9:27. doi:10.1186/1742-9994-9-27

    Article  PubMed Central  PubMed  Google Scholar 

  • Apelt G (1969) Fortpflanzungsbiologie, Entwicklungszyklen und vergleichende Frühentwicklung acoeler Turbellarien. Mar Biol 4:267–325

    Google Scholar 

  • Aronowicz J, Lowe CJ (2006) Hox gene expression in the hemichordate Saccoglossus kowalevskii and the evolution of deuterostome nervous systems. Integr Comp Biol 46:890–901. doi:10.1093/Icb/Icl045

    Article  CAS  PubMed  Google Scholar 

  • Ax P (1984) Das phylogenetische system. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Baguñá J, Riutort M (2004) The dawn of bilaterian animals: the case of acoelomorph flatworms. Bioessays 26:1046–1057

    Article  PubMed  Google Scholar 

  • Børve A, Hejnol A (2014) Development and juvenile anatomy of the nemertodermatid Meara stichopi (Bock) Westblad 1949 (Acoelomorpha). Front Zool 11:50. doi:10.1186/1742-9994-11-50

    Article  PubMed Central  PubMed  Google Scholar 

  • Boyer BC (1971) Regulative development in a spiralian embryo as shown by cell deletion experiments on the acoel, Childia. J Exp Zool 176:97–105. doi:10.1002/jez.1401760110

    Article  CAS  PubMed  Google Scholar 

  • Bresslau E (1909) Die Entwicklung der Acoelen. Verhandlungen der Deutschen Zoologischen Gesellschaft 314–323

    Google Scholar 

  • Carranza S, Baguñá J, Riutort M (1997) Are the Platyhelminthes a monophyletic primitive group? An assessment using 18S rDNA sequences. Mol Biol Evol 14:485–497

    Article  CAS  PubMed  Google Scholar 

  • Chiodin M, Achatz JG, Wanninger A, Martinez P (2011) Molecular architecture of muscles in an acoel and its evolutionary implications. J Exp Zool B Mol Dev Evol 316:427–439. doi:10.1002/jez.b.21416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chiodin M, Børve A, Berezikov E, Ladurner P, Martinez P, Hejnol A (2013) Mesodermal gene expression in the acoel Isodiametra pulchra indicates a low number of mesodermal cell types and the endomesodermal origin of the gonads. PLoS One 8:e55499. doi:10.1371/journal.pone.0055499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chourrout D, Delsuc F, Chourrout P, Edvardsen RB, Rentzsch F, Renfer E, Jensen MF, Zhu B, de Jong P, Steele RE, Technau U (2006) Minimal ProtoHox cluster inferred from bilaterian and cnidarian Hox complements. Nature 442:684–687. doi:10.1038/nature04863

    Article  CAS  PubMed  Google Scholar 

  • Conklin EG (1897) The embryology of Crepidula. J Morphol 13:1–230

    Article  Google Scholar 

  • Cook CE, Jiménez E, Akam M, Saló E (2004) The Hox gene complement of acoel flatworms, a basal bilaterian clade. Evol Dev 6:154–163. doi:10.1111/j.1525-142X.2004.04020.x

    Article  CAS  PubMed  Google Scholar 

  • De Mulder K, Kuales G, Pfister D, Willems M, Egger B, Salvenmoser W, Thaler M, Gorny A-K, Hrouda M, Borgonie G, Ladurner P (2009) Characterization of the stem cell system of the acoel Isodiametra pulchra. BMC Dev Biol 9:69. doi:10.1186/1471-213X-9-69

    Article  PubMed Central  PubMed  Google Scholar 

  • DuBuc TQ, Ryan JF, Shinzato C, Satoh N, Martindale MQ (2012) Coral comparative genomics reveal expanded Hox cluster in the cnidarian-bilaterian ancestor. Integr Comp Biol 52:835–841. doi:10.1093/icb/ics098

    Article  CAS  PubMed  Google Scholar 

  • Dunn CW, Giribet G, Edgecombe GD, Hejnol A (2014) Animal phylogeny and its evolutionary implications. Ann Rev Ecol Evol Syst 45:371–395. doi:10.1146/annurev-ecolsys-120213-091627

    Article  Google Scholar 

  • Egger B, Steinke D, Tarui H, De Mulder K, Arendt D, Borgonie G, Funayama N, Gschwentner R, Hartenstein V, Hobmayer B, Hooge M, Hrouda M, Ishida S, Kobayashi C, Kuales G, Nishimura O, Pfister D, Rieger R, Salvenmoser W, Smith J III, Technau U, Tyler S, Agata K, Salzburger W, Ladurner P (2009) To be or not to be a flatworm: the acoel controversy. PLoS One 4:e5502. doi:10.1371/journal.pone.0005502

    Article  PubMed Central  PubMed  Google Scholar 

  • Ehlers U (1985) Das phylogenetische System der Plathelminthes. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Ehlers U (1991) Comparative morphology of statocysts in the Plathelminthes and the Xenoturbellida. Hydrobiologia 227:263–271

    Article  Google Scholar 

  • Ferrero E (1973) A fine structural analysis of the statocyst in Turbellaria Acoela. Zool Scr 2:5–16

    Article  Google Scholar 

  • Fröbius AC, Matus DQ, Seaver EC (2008) Genomic organization and expression demonstrate spatial and temporal Hox gene colinearity in the lophotrochozoan Capitella sp. I. PLoS One 3:e4004. doi:10.1371/journal.pone.0004004

    Article  PubMed Central  PubMed  Google Scholar 

  • Gardiner EG (1895) Early development of Polychoerus caudatus, Mark. J Morph 11:155–176

    Article  Google Scholar 

  • Gardiner EG (1898) The growth of the ovum, formation of the polar bodies, and the fertilization in Polychoerus caudatus. J Morph 15:73–104

    Article  Google Scholar 

  • Georgévitch J (1899) Etude sur le développement de la Convoluta roscoffensis Graff. Arch Zool Expérim 3:343–361

    Google Scholar 

  • Hejnol A (2015) Acoelomorpha. In: Schmidt-Rhaesa A, Harzsch S, Purschke G (eds) Structure and evolution of invertebrate nervous systems. Oxford University Press, Oxford

    Google Scholar 

  • Hejnol A, Martindale MQ (2008a) Acoel development indicates the independent evolution of the bilaterian mouth and anus. Nature 456:382–386. doi:10.1038/nature07309

    Article  CAS  PubMed  Google Scholar 

  • Hejnol A, Martindale MQ (2008b) Acoel development supports a simple planula-like urbilaterian. Philos Trans R Soc Lond B Biol Sci 363:1493–1501. doi:10.1098/rstb.2007.2239

    Article  PubMed Central  PubMed  Google Scholar 

  • Hejnol A, Martindale MQ (2009) Coordinated spatial and temporal expression of Hox genes during embryogenesis in the acoel Convolutriloba longifissura. BMC Biol 7:65. doi:10.1186/1741-7007-7-65

    Article  PubMed Central  PubMed  Google Scholar 

  • Hejnol A, Obst M, Stamatakis A, Ott M, Rouse GW, Edgecombe GD, Martinez P, Baguna J, Bailly X, Jondelius U, Wiens M, Müller WEG, Seaver E, Wheeler WC, Martindale MQ, Giribet G, Dunn CW (2009) Assessing the root of bilaterian animals with scalable phylogenomic methods. Proc Royal Soc Series B 276:4261–4270. doi:10.1098/rspb.2009.0896

    Article  Google Scholar 

  • Henry JQ, Martindale MQ, Boyer BC (2000) The unique developmental program of the acoel flatworm, Neochildia fusca. Dev Biol 220:285–295. doi:10.1006/dbio.2000.9628

    Article  CAS  PubMed  Google Scholar 

  • Hooge M (2001) Evolution of body-wall musculature in the Platyhelminthes (Acoelomorpha, Catenulida, Rhabditophora). J Morphol 249:171–194

    Article  CAS  PubMed  Google Scholar 

  • Jondelius U, Ruiz-Trillo I, Baguñà J, Riutort M (2002) The Nemertodermatida are basal bilaterians and not members of the Platyhelminthes. Zool Scr 31:201–215

    Article  Google Scholar 

  • Jondelius U, Larsson K, Raikova OI (2004) Cleavage in Nemertoderma westbladi (Nemertodermatida) and its phylogenetic significance. Zoomorphology 123:221–225

    Article  Google Scholar 

  • Jondelius U, Wallberg A, Hooge M, Raikova OI (2011) How the worm got its pharynx: phylogeny, classification, and Bayesian assessment of character evolution in acoela. Syst Biol 60:845–871

    Article  PubMed  Google Scholar 

  • Ladurner P, Rieger R (2000) Embryonic muscle development of Convoluta pulchra (Turbellaria-Acoelomorpha, Platyhelminthes). Dev Biol 222:359–375. doi:10.1006/dbio.2000.9715

    Article  CAS  PubMed  Google Scholar 

  • Meyer-Wachsmuth I, Raikova OI, Jondelius U (2013) The muscular system of Nemertoderma westbladi and Meara stichopi (Nemertoderma, Acoelomorpha). Zoomorphology 132:239–252

    Article  Google Scholar 

  • Moreno E, Nadal M, Baguñà J, Martínez P (2009) Tracking the origins of the bilaterian Hox patterning system: insights from the acoel flatworm Symsagittifera roscoffensis. Evol Dev 11:574–581. doi:10.1111/j.1525-142X.2009.00363.x

    Article  CAS  PubMed  Google Scholar 

  • Moreno E, De Mulder K, Salvenmoser W, Ladurner P, Martinez P (2010) Inferring the ancestral function of the posterior Hox gene within the bilateria: controlling the maintenance of reproductive structures, the musculature and the nervous system in the acoel flatworm Isodiametra pulchra. Evol Dev 12:258–266. doi:10.1111/j.1525-142X.2010.00411.x

    Article  CAS  PubMed  Google Scholar 

  • Moreno E, Permanyer J, Martinez P (2011) The origin of patterning systems in bilateria-insights from the Hox and ParaHox genes in Acoelomorpha. Genomics Proteomics Bioinforma 9:65–76. doi:10.1016/S1672-0229(11)60010-7

    Article  CAS  Google Scholar 

  • Nakano H, Lundin K, Bourlat SJ, Telford MJ, Funch P, Nyengaard JR, Obst M, Thorndyke MC (2013) Xenoturbella bocki exhibits direct development with similarities to Acoelomorpha. Nat Commun 4:1537. doi:10.1038/ncomms2556

    Article  PubMed Central  PubMed  Google Scholar 

  • Paps J, Baguña J, Riutort M (2009) Bilaterian phylogeny: a broad sampling of 13 nuclear genes provides a new Lophotrochozoa phylogeny and supports a paraphyletic basal Acoelomorpha. Mol Biol Evol 26:2397–2406. doi:10.1093/molbev/msp150

    Article  CAS  PubMed  Google Scholar 

  • Philippe H, Brinkmann H, Copley RR, Moroz LL, Nakano H, Poustka AJ, Wallberg A, Peterson KJ, Telford MJ (2011) Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470:255–258. doi:10.1038/nature09676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raikova OI, Reuter M, Jondelius U, Gustafsson MKS (2000) The brain of the Nemertodermatida (Platyhelminthes) as revealed by anti-5HT and anti-FMRFamide immunostainings. Tissue Cell 32:358–365

    Article  CAS  PubMed  Google Scholar 

  • Raikova OI, Reuter M, Gustafsson MKS, Maule AG, Halton DW, Jondelius U (2004) Basiepidermal nervous system in Nemertoderma westbladi (Nemertodermatida): GYIRFamide immunoreactivity. Zoology (Jena) 107:75–86. doi:10.1016/j.zool.2003.12.002

    Article  Google Scholar 

  • Ramachandra NB, Gates RD, Ladurner P, Jacobs DK, Hartenstein V (2002) Embryonic development in the primitive bilaterian Neochildia fusca: normal morphogenesis and isolation of POU genes Brn-1 and Brn-3. Dev Genes Evol 212:55–69. doi:10.1007/s00427-001-0207-y

    Article  CAS  PubMed  Google Scholar 

  • Rieger R, Tyler S, Smith JPS, Rieger GE (1991) Platyhelminthes: turbellaria. In: Harrison FW, Bogitsch BJ (eds) Microscopic anatomy of invertebrates. Wiley, New York, pp 7–140

    Google Scholar 

  • Ruiz-Trillo I, Riutort M, Littlewood DTJ, Herniou EA, Baguña J (1999) Acoel flatworms: earliest extant bilaterian Metazoans, not members of Platyhelminthes. Science 283:1919–1923

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Trillo I, Paps J, Loukota M, Ribera C, Jondelius U, Baguñá J, Riutort M (2002) A phylogenetic analysis of myosin heavy chain type II sequences corroborates that Acoela and Nemertodermatida are basal bilaterians. Proc Natl Acad Sci U S A 99:11246–11251. doi:10.1073/pnas.172390199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ryan JF, Mazza ME, Pang K, Matus DQ, Baxevanis AD, Martindale MQ, Finnerty JR (2007) Pre-bilaterian origins of the Hox cluster and the Hox code: evidence from the sea anemone, Nematostella vectensis. PLoS One 2:e153. doi:10.1371/journal.pone.0000153

    Article  PubMed Central  PubMed  Google Scholar 

  • Semmler H, Bailly X, Wanninger A (2008) Myogenesis in the basal bilaterian Symsagittifera roscoffensis (Acoela). Front Zool 5:14. doi:10.1186/1742-9994-5-14

    Article  PubMed Central  PubMed  Google Scholar 

  • Semmler H, Chiodin M, Bailly X, Martinez P, Wanninger A (2010) Steps towards a centralized nervous system in basal bilaterians: insights from neurogenesis of the acoel Symsagittifera roscoffensis. Dev Growth Differ 52:701–713. doi:10.1111/j.1440-169X.2010.01207.x

    Article  CAS  PubMed  Google Scholar 

  • Sikes JM, Bely AE (2010) Making heads from tails: development of a reversed anterior-posterior axis during budding in an acoel. Dev Biol 338:86–97. doi:10.1016/j.ydbio.2009.10.033

    Article  CAS  PubMed  Google Scholar 

  • Smith J, Tyler S (1985) The acoel turbellarians: kingpins of metazoan evolution or a specialized offshoot? In: Conway Morris S, George JD, Gibson R, Platt HM (eds) The origins and relationships of lower invertebrates. Calderon Press, Oxford, pp 123–142

    Google Scholar 

  • Srivastava M, Mazza-Curll KL, van Wolfswinkel JC, Reddien PW (2014) Whole-body acoel regeneration is controlled by Wnt and Bmp-Admp signaling. Curr Biol 24:1107–1113. doi:10.1016/j.cub.2014.03.042

    Article  CAS  PubMed  Google Scholar 

  • Sterrer W (1998) New and known nemertodermatida (Platyhelminthes-Acoelomorpha) – a revision. Belg J Zool 128:55–92

    Google Scholar 

  • Tyler S (2001) The early worm: origins and relationships of the lower flatworms. In: Littlewood DTJ, Bray RA (eds) Interrelationships of the platyhelminthes. Taylor & Francis Ltd., London, pp 3–12

    Google Scholar 

  • Wallberg A, Curini-Galletti M, Ahmadzadeh A, Jondelius U (2007) Dismissal of acoelomorpha: acoela and nemertodermatida are separate early bilaterian clades. Zool Scr 36:509–523

    Article  Google Scholar 

  • Westblad E (1937) Die Turbellarien-Gattung Nemertoderma Steinböck. Acta Soc pro Fauna et Flora Fenn 60:45–89

    Google Scholar 

  • Westblad E (1949) On Meara stichopi (Bock) Westblad, a new representative of Turbellaria archoophora. Arkiv Zoologi 1:43–57

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Hejnol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Hejnol, A. (2015). Acoelomorpha and Xenoturbellida. In: Wanninger, A. (eds) Evolutionary Developmental Biology of Invertebrates 1. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1862-7_9

Download citation

Publish with us

Policies and ethics