Skip to main content

Computational Methods for Soft Tissue Biomechanics

  • Chapter
Biomechanics of Soft Tissue in Cardiovascular Systems

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 441))

Abstract

Computational biomechanics provides a framework for modeling the function of tissues that integrates structurally from cell to organ system and functionally across the physiological processes that affect tissue mechanics or are regulated by mechanical forces. We develop an integrative computational strategy for soft tissue based on the finite element method, using the biomechanics of the heart as a case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, D. G., and Orchard, C. H. (1987). Myocardial contractile function during ischemia and hypoxia. Circ. Res. 60(2): 153–68.

    Article  Google Scholar 

  • Arts, T., Reneman, R. S., and Veenstra, P. C. (1979). A model of the mechanics of the left ventricle. Ann. Biomed. Engr. 7:299.

    Article  Google Scholar 

  • Arts, T., Veenstra, P. C., and Reneman, R. S. (1982). Epicardial deformation and left ventricular wall mechanics during ejection in the dog. Am. J. Physiol. 243:H379.

    Google Scholar 

  • Backx, P. H., Gao, W. D., Azan-Backx, M. D., and Marban, E. (1995). The relationship between contractile force and intracellular [Ca2+] in intact rat cardiac trabeculae. J. Gen. Physiol. 105(1): 1–19.

    Article  Google Scholar 

  • Bers, D. M. (1991). Excitation-Contraction Coupling and Cardiac Contractile Force. Dordrecht: Kluwer.

    Google Scholar 

  • Bogen, D. K., Rabinowitz, S. A., Needleman, A., McMahon, T. A., and Abelmann, W. H. (1980). An analysis of the mechanical disadvantage of myocardial infarction in the canine left ventricle. Circ. Res. 47:728–741.

    Article  Google Scholar 

  • Brutsaert, D. L., and Sys, S. U. (1989). Relaxation and diastole of the heart. Physiol. Rev. 69(4): 1228–315.

    Google Scholar 

  • Chadwick, R. S. (1982). Mechanics of the left ventricle. Biophys. J. 39(3):279–288.

    Article  Google Scholar 

  • Costa, K. D., Hunter, P. J., Rogers, J. M., Guccione, J. M., Waldman, L. K., and McCulloch, A. D. (1996a). A three-dimensional finite element method for large elastic deformations of ventricular myocardium: I-Cylindrical and spherical polar coordinates. J. Biomech. Engr. 118(4):452–463.

    Article  Google Scholar 

  • Costa, K. D., Hunter, P. J., Wayne, J. S., Waldman, L. K., Guccione, J. M., and McCulloch, A. D. (1996b). A three-dimensional finite element method for large elastic deformations of ventricular myocardium: II-Prolate spheroidal coordinates. J. Biomech. Engr. 118(4):464–472.

    Article  Google Scholar 

  • de Tombe, P. P., and ter Keurs, H. E. (1992). An internal viscous element limits unloaded velocity of sarcomere shortening in rat myocardium. J. Physiol. 454:619–42.

    Google Scholar 

  • Demer, L. L., and Yin, F. C. (1983). Passive biaxial mechanical properties of isolated canine myocardium. J. Physiol. 339:615–630.

    Google Scholar 

  • Demiray, H. (1976). Large deformation analysis of some basic problems in biophysics. Bull. Math. Biol. 38(6):701–712.

    MATH  Google Scholar 

  • Dokos, S., LeGrice, I. J., Smaill, B. H., Kar, J., and Young, A. A. (2000). A triaxial-measurement shear-test device for soft biological tissues. J. Biomech. Engr. 122(5):471–8.

    Article  Google Scholar 

  • Fung, Y. C. (1981). Biomechanics: Mechanical Properties of Living Tissues. New York: Springer-Verlag.

    Book  Google Scholar 

  • Gaasch, W. H., and LeWinter, M. M. (1994). Left Ventricular Diastolic Dysfunction and Heart Failure. Philadelphia: Lea & Febiger.

    Google Scholar 

  • Gilbert, J. C., and Glantz, S. A. (1989). Determinants of left ventricular filling and of the diastolic pressure-volume relation. Circ. Res. 64(5):827–52.

    Article  Google Scholar 

  • Glantz, S.A., and Parmley, W. W. (1978). Factors which affect the diastolic pressure-volume curve. Circ. Res. 42(2): 171–80.

    Article  Google Scholar 

  • Glantz, S. A., Misbach, G. A., Moores, W. Y., Mathey, D. G., Lekven, J., Stowe, D. F., Parmley, W. W., and Tyberg, J. V. (1978). The pericardium substantially affects the left ventricular diastolic pressure-volume relationship in the dog. Circ. Res. 42(3):433–41.

    Article  Google Scholar 

  • Glass, L., Hunter, P. J., and McCulloch, A. D. (1991). Theory of Heart: Biomechanics, Biophysics and Nonlinear Dynamics of Cardiac Function. New York: Springer-Verlag.

    Book  Google Scholar 

  • Guccione, J. M., and McCulloch, A. D. (1993). Mechanics of active contraction in cardiac muscle: Part I-Constitutive relations for fiber stress that describe deactivation. J. Biomech. Engr. 115(1):72–81.

    Article  Google Scholar 

  • Guccione, J. M., McCulloch, A. D., and Waldman, L. K. (1991). Passive material properties of intact ventricular myocardium determined from a cylindrical model. J. Biomech. Engr. 113(1):42–55.

    Article  Google Scholar 

  • Gupta, K. B., Ratcliffe, M. B., Fallen, M. A., Edmunds Jr., L. H., and Bogen, D. K. (1994). Changes in passive mechanical stiffness of myocardial tissue with aneurysm formation. Circ. 89(5):2315–26.

    Article  Google Scholar 

  • Hill, A. V. (1938). Time heart of shortenning and the dynamic constants of muscle. Proc. Roy. Soc. 126:136–195.

    Article  Google Scholar 

  • Hill, A. V. (1970). First and Last Experiments in Muscle Mechanics. Cambridge: University Press.

    Google Scholar 

  • Hill, J. M. (1973). Partial solutions of finite elasticity — three dimensional deformations. J. Appl. Math. Phys. 24:609–618.

    Article  MATH  Google Scholar 

  • Holmes, J. W., Yamashita, H., Waldman, L. K., and Covell, J. W. (1994). Scar remodeling and transmural deformation after infarction in the pig. Circ. 90(1):411–420.

    Article  Google Scholar 

  • Humphrey, J. D., and Yin, F. C. (1987). A new constitutive formulation for characterizing the mechanical behavior of soft tissues. Biophys. J. 52(4):563–70.

    Article  Google Scholar 

  • Humphrey, J. D., Strumpf, R. K., and Yin, F. C. (1990a). Determination of a constitutive relation for passive myocardium: II. Parameter estimation. J. Biomech. Engr. 112(3):340–6.

    Article  Google Scholar 

  • Humphrey, J. D., Strumpf, R. K., and Yin, F. C. (1990b). Determination of a constitutive relation for passive myocardium: I. A new functional form. J. Biomech. Engr. 112(3):333–9.

    Article  Google Scholar 

  • Hunter, P. J., McCulloch, A. D., Nielsen, P. M. F., and Smaill, B. H. (1988). A finite element model of passive ventricular mechanics. In Spilker, R. L., and Simon, B. R., eds., Computational Methods in Bioengineering, volume 9. Chicago: ASME. 387–397.

    Google Scholar 

  • Hunter, P. J., McCulloch, A. D., and ter Keurs, H. E. (1998). Modelling the mechanical properties of cardiac muscle. Prog. Biophys. Mol. Biol. 69(2–3):289–331.

    Article  Google Scholar 

  • Huxley, A. F. (1957). Muscle structure and theories of contraction. Prog. Biophys. Chem. 7:255–318.

    Google Scholar 

  • Ingels Jr., N. B., Daughters 2nd, G. T., Stinson, E. B., and Alderman, E. L. (1975). Measurement of midwall myocardial dynamics in intact man by radiography of surgically implanted markers. Circ. 52(5):859–67.

    Article  Google Scholar 

  • Janicki, J. S., and Weber, K. T. (1980). The pericardium and ventricular interaction, distensibility, and function. Am. J. Physiol. 238(4):H494–503.

    Google Scholar 

  • Karlon, W. J., Covell, J. W., McCulloch, A. D., Hunter, P. J., and Omens, J. H. (1998). Automated measurement of myofiber disarray in transgenic mice with ventricular expression of ras. Anat. Rec. 252(4):612–25.

    Article  Google Scholar 

  • Karlon, W. J., McCulloch, A. D., Covell, J. W., Hunter, P. J., and Omens, J. H. (2000). Regional dysfunction correlates with myofiber disarray in transgenic mice with ventricular expression of ras. Am. J. Physiol. Heart Circ. Physiol. 278(3):H898–906.

    Google Scholar 

  • Karlon, W. J. (1998). Influence of Myocardial Fiber Organization on Ventricular Function. Ph.d., University of California San Diego.

    Google Scholar 

  • Kentish, J. C., ter Keurs, H. E., Ricciardi, L., Bucx, J. J., and Noble, M. I. (1986). Comparison between the sarcomere length-force relations of intact and skinned trabeculae from rat right ventricle. Influence of calcium concentrations on these relations. Circ. Res. 58(6):755–68.

    Article  Google Scholar 

  • Kruger, G. W., and Pollack, J. H. (1975). Myocardial sarcomere dynamics during isometric contraction. J. Physiol 51:627–643.

    Google Scholar 

  • Landesberg, A., and Sideman, S. (1994). Coupling calcium binding to troponin C and cross-bridge cycling in skinned cardiac cells. Am. J. Physiol. 266(3 Pt 2):H1260–71.

    Google Scholar 

  • Landesberg, A., Markhasin, V. S., Beyar, R., and Sideman, S. (1996). Effect of cellular inhomogeneity on cardiac tissue mechanics based on intracellular control mechanisms. Am. J. Physiol 270(3 Pt 2):H1101–14.

    Google Scholar 

  • Lee, M. C., Fung, Y. C., Shabetai, R., and LeWinter, M. M. (1987). Biaxial mechanical properties of human pericardium and canine comparisons. Am. J. Physiol. 253(1 Pt 2):H75–82.

    Google Scholar 

  • LeGrice, I. J., Smaill, B. H., Chai, L. Z., Edgar, S. G., Gavin, J. B., and Hunter, P. J. (1995a). Laminar structure of the heart: Ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol. 269(2 Pt 2):H571–82.

    Google Scholar 

  • LeGrice, I. J., Takayama, Y., and Covell, J. W. (1995b). Transverse shear along myocardial cleavage planes provides a mechanism for normal systolic wall thickening. Circ. Res. 77:182–193.

    Article  Google Scholar 

  • Legrice, I. J., Hunter, P. J., and Smaill, B. H. (1997). Laminar structure of the heart: A mathematical model. Am. J. Physiol. 272(5 Pt 2):H2466–76.

    Google Scholar 

  • Lin, I. E., and Taber, L. A. (1994). Mechanical effects of looping in the embryonic chick heart. J. Biomech. 27(3):311–21.

    Article  Google Scholar 

  • Lin, D. H., and Yin, F. C. (1998). A multiaxial constitutive law for mammalian left ventricular myocardium in steady-state barium contracture or tetanus. J. Biomech. Engr. 120(4):504–17.

    Article  Google Scholar 

  • Maron, B. J., Bonow, R. O., Cannon 3rd, R. O., Leon, M. B., and Epstein, S. E. (1987). Hypertrophic cardiomyopathy. Interrelations of clinical manifestations, pathophysiology, and therapy (1). New Engl. J. Med. 316(13):780–9.

    Article  Google Scholar 

  • Maruyama, Y., Ashikawa, K., Isoyama, S., Kanatsuka, H., Ino-Oka, E., and Takishima, T. (1982). Mechanical interactions between four heart chambers with and without the pericardium in canine hearts. Circ. Res. 50(1):86–100.

    Article  Google Scholar 

  • May-Newman, K., Omens, J. H., Pavelec, R. S., and McCulloch, A. D. (1994). Three-dimensional transmural mechanical interaction between the coronary vasculature and passive myocardium in the dog. Circ. Res. 74(6): 1166–78.

    Article  Google Scholar 

  • Mazhari, R., Omens, J. H., Covell, J. W., and McCulloch, A. D. (2000). Structural basis of regional dysfunction in acutely ischemic myocardium. Cardiovasc. Res. 47(2):284–93.

    Article  Google Scholar 

  • ter Keurs, H. E., Rijnsburger, W. H., van Heuningen, R., and Nagelsmit, M. J. (1980). Tension development and sarcomere length in rat cardiac trabeculae. Evidence of length-dependent activation. Circ. Res. 46(5):703–14.

    Article  Google Scholar 

  • McCulloch, A. D., and Omens, J. H. (1991). Non-homogeneous analysis of three-dimensional transmural finite deformation in canine ventricular myocardium. J. Biomech. 24(7):539–48.

    Article  Google Scholar 

  • McCulloch, A. D., Smaill, B. H., and Hunter, P. J. (1989). Regional left ventricular epicardial deformation in the passive dog heart. Circ. Res. 64:721–733.

    Article  Google Scholar 

  • McLean, M., Ross, M. A., and Prothero, J. (1989). Three-dimensional reconstruction of the myofiber pattern in the fetal and neonatal mouse heart. Anat. Rec. 224(3):392–406.

    Article  Google Scholar 

  • Meier, G. D., Bove, A. A., Santamore, W. P., and Lynch, P. R. (1980a). Contractile function in canine right ventricle. Am. J. Physiol. 239(6):H794–804.

    Google Scholar 

  • Meier, G. D., Ziskin, M. C., Santamore, W. P., and Bove, A. A. (1980b). Kinematics of the beating heart. IEEE Trans. Biomed. Engr. 27(6):319–29.

    Article  Google Scholar 

  • Mirsky, I., and Rankin, J. S. (1979). The effects of geometry, elasticity, and external pressures on the diastolic pressure-volume and stiffness-stress relations. How important is the pericardium? Circ. Res. 44(5):601–11.

    Article  Google Scholar 

  • Mirsky, I. (1976). Assessment of passive elastic stiffness of cardiac muscle: Mathematical concepts, physiologic and clinical considerations, directions of future research. Prog. Cardiovasc. Dis. 18(4):277–308.

    Article  Google Scholar 

  • Nevo, E., and Lanir, Y. (1989). Structural finite deformation model of the left ventricle during diastole and systole. J. Biomech. Engr. 111(4):342–9.

    Article  Google Scholar 

  • Nielsen, P. M., Grice, I. J. L., Smaill, B. H., and Hunter, P. J. (1991). Mathematical model of geometry and fibrous structure of the heart. Am. J. Physiol. 260(4 Pt 2):H1365–78.

    Google Scholar 

  • Novak, V. P., Yin, F. C., and Humphrey, J. D. (1994). Regional mechanical properties of passive myocardium. J. Biomech. 27(4):403–12.

    Article  Google Scholar 

  • O’Dell, W. G., and McCulloch, A. D. (2000). Imaging three-dimensional cardiac function. Ann. Rev. Biomed. Eng. 2:431–56.

    Article  Google Scholar 

  • Oden, J. T. (1972). Finite Elements of Nonlinear Continua. New York: McGraw-Hill Book Co.

    MATH  Google Scholar 

  • Ogden, R. W. (1984). Non-Linear Elastic Deformations. New York: Ellis Horwood.

    Google Scholar 

  • Omens, J. H., May, K. D., and McCulloch, A. D. (1991). Transmural distribution of three-dimensional strain in the isolated arrested canine left ventricle. Am. J. Physiol. 261(3 Pt 2):H918–28.

    Google Scholar 

  • Omens, J. H., MacKenna, D. A., and McCulloch, A. D. (1993). Measurement of strain and analysis of stress in resting rat left ventricular myocardium. J. Biomech. 26(6):665–76.

    Article  Google Scholar 

  • Panerai, R. B. (1980). A model of cardiac muscle mechanics and energetics. J. Biomech. 13(11):929–40.

    Article  Google Scholar 

  • Patterson, S. W., and Starling, E. H. (1914). On the mechanical factors which determine the output of the ventricles. J. Physiol. 48:357.

    Google Scholar 

  • Peng, S. H., and Chang, W. V. (1997). A compressible approach in finite element analysis of rubber-elastic materials. Comput. & Structures 62:573–593.

    Article  MATH  Google Scholar 

  • Ruegg, J. C. (1988). Calcium in Muscle Activation: A Comparative Approach. Berlin: Springer-Verlag.

    Google Scholar 

  • Saffitz, J. E., Kanter, H. L., Green, K. G., Tolley, T. K., and Beyer, E. C. (1994). Tissue-specific determinants of anisotropic conduction velocity in canine atrial and ventricular myocardium. Circ. Res. 74(6): 1065–70.

    Article  Google Scholar 

  • Sagawa, K. (1988). Cardiac Contraction and the Pressure-Volume Relationship. New York: Oxford University Press.

    Google Scholar 

  • Salisbury, P. F., Cross, C. E., and Rieben, P. A. (1960). Influence of coronary artery pressure upon myocardial elasticity. Circ. Res. 8:794.

    Article  Google Scholar 

  • Schmid, P., Stuber, M., Boesiger, P., Hess, O. M., and Niederer, P. (1995). Determination of displacement, stress- and strain-distribution in the human heart: A FE-model on the basis of MR imaging. Technol. Health Care 3(3):209–14.

    Google Scholar 

  • Schoenberg, M. (1980). Geometrical factors influencing muscle force development. II. Radial forces. Biophys. J. 30(1):69–77.

    Article  MathSciNet  Google Scholar 

  • Simpson, G., Fisher, C., and Wright, D. K. (2001). Modeling the interactions between a prosthetic socket, polyurethane liners and the residual limb in transtibial amputees using non-linear finite element analysis. Biomed. Sci. Instrum. 37:343–7.

    Google Scholar 

  • Slinker, B. K., and Glantz, S. A. (1986). End-systolic and end-diastolic ventricular interaction. Am. J. Physiol. 251(5 Pt 2):H1062–75.

    Google Scholar 

  • Sonnenblick, E. H., Napolitano, L. M., Daggett, W. M., and Cooper, T. (1967). An intrinsic neuromuscular basis for mitral valve motion in the dog. Circ. Res. 21(1):9–15.

    Article  Google Scholar 

  • Spencer, A. J. M. (1980). Continuum Mechanics. London: Lonman Press.

    MATH  Google Scholar 

  • Spotnitz, H. M., Spotnitz, W. D., Cottrell, T. S., Spiro, D., and Sonnenblick, E. H. (1974). Cellular basis for volume related wall thickness changes in the rat left ventricle. J. Mol. Cell Cardiol. 6(4):317–31.

    Article  Google Scholar 

  • Streeter Jr., D. D., and Hanna, W. T. (1973). Engineering mechanics for successive states in canine left ventricular myocardium. I. Cavity and wall geometry. Circ. Res. 33(6):639–55.

    Article  Google Scholar 

  • Streeter Jr., D. D., Spotnitz, H. M., Patel, D. P., Ross Jr., J., and Sonnenblick, E. H. (1969). Fiber orientation in the canine left ventricle during diastole and systole. Circ. Res. 24(3):339–47.

    Article  Google Scholar 

  • Streeter Jr., D. D. (1979). Gross morphology and fiber geometry of the heart. In Bethesda, M. D., ed., Handbook of Physiology. American Physiological Society. 61.

    Google Scholar 

  • T.R Usyk and A.D. McCulloc Taber, L. A. (1991). On a nonlinear theory for muscle shells: Part II-Application to the beating left ventricle. J. Biomech. Engr. 113(1):63–71.

    Article  Google Scholar 

  • Torrent-Guasp, F. (1973). The Cardiac Muscle. Madrid: Juan March Foundation.

    Google Scholar 

  • Tozeren, A. (1985). Continuum rheology of muscle contraction and its application to cardiac contractility. Biophys. J. 47(3):303–9.

    Article  Google Scholar 

  • Usyk, T. P., Mazhari, R., and McCulloch, A. D. (2000). Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle. J. Elasticity 61(1/3): 143–164.

    Article  MATH  Google Scholar 

  • Usyk, T. P., Omens, J. H., and McCulloch, A. D. (2001). Regional septal dysfunction in a three-dimensional computational model of focal myofiber disarray. Am. J. Physiol. Heart Circ. Physiol. 281(2):H506–14.

    Google Scholar 

  • Vetter, F., and McCulloch, A. D. (1998). Three-dimensional analysis of regional cardiac function: A model of the rabbit ventricular anatomy. Prog. Biophys. Mol. Biol. 69:157.

    Article  Google Scholar 

  • Vetter, F. J., and McCulloch, A. D. (2000). Three-dimensional stress and strain in passive rabbit left ventricle: A model study. Ann. Biomed. Engr. 28(7):781–92.

    Article  Google Scholar 

  • Waldman, L. K., Fung, Y. C., and Covell, J. W. (1985). Transmural myocardial deformation in the canine left ventricle. Normal in vivo three-dimensional finite strains. Circ. Res. 57(1): 152–63.

    Article  Google Scholar 

  • Weis, S. M., Omens, J. H., and McCulloch, A. D. (2001). Ventricular tissue adaptation associated with collagen deficiency in the osteogenesis imperfecta murine. J. Biomech. Engr. in press.

    Google Scholar 

  • Wong, A. Y. (1971). Mechanics of cardiac muscle, based on Huxley’s model: Mathematical stimulation of isometric contraction. J. Biomech. 4(6):529–40.

    Article  Google Scholar 

  • Wong, A. Y. (1972). Mechanics of cardiac muscle, based on Huxley’s model: Simulation of active state and force-velocity relation. J. Biomech. 5(1): 107–17.

    Article  Google Scholar 

  • Yellin, E. L., Hori, M., and Yoran, C. (1986). Left ventricular relaxation in the filling and nonfilling intact canine heart. Am. J. Physiol. 250:620.

    Google Scholar 

  • Yin, F. C., Chan, C. C., and Judd, R. M. (1996). Compressibility of perfused passive myocardium. Am. J. Physiol. 271(5 Pt 2):H1864–70.

    Google Scholar 

  • Young, A. A., and Axel, L. (1992). Three-dimensional motion and deformation of the heart wall: Estimation with spatial modulation of magnetization — a model-based approach. Radiology 185(1):241–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this chapter

Cite this chapter

Usyk, T.P., McCulloch, A.D. (2003). Computational Methods for Soft Tissue Biomechanics. In: Holzapfel, G.A., Ogden, R.W. (eds) Biomechanics of Soft Tissue in Cardiovascular Systems. International Centre for Mechanical Sciences, vol 441. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2736-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2736-0_7

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-00455-5

  • Online ISBN: 978-3-7091-2736-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics