Skip to main content

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

Inflammatory cells are thought to be instrumental in the pathophysiology of diseases and the control of their recruitment and activation appears to be an attractive strategy for therapeutic intervention. Chemokines are a family of small molecular weight (7–15 kDa) proteins that in conjunction with adhesion molecules play a crucial role in leukocyte recruitment, cellular activation and proliferation at sites of inflammation. Chemokines are produced by a variety of cell types, including leukocytic and non-leukocytic cells, usually in response to antigens, irritants and other cytokines. Interleukin-8 (CXCL8) was the first member to be identified of this new family of proinflammatory chemokines that now constitute over 45 members. Chemokines produce their biological effects by interacting with greater than 18 G protein coupled cell surface receptors. A few chemokines bind selectively to a single receptor but other chemokines bind to more than one receptor [1, 2]. CXCL8 belongs to a subgroup of chemokines known as ELR+ chemokines because of the Glu4-Leu5-Arg6 amino acid sequence between positions 4 and 6. Other members of this group include CXCL1, 2, 3, 5, 6, and 7. A diverse variety of biological effects are attributed to CXCL8 and related ELR+ chemokines, including several involving inflammatory cell activation and chemotaxis, production of reactive oxygen species, increased expression of the integrin CD11b-CD18, enhancement of cell adhesion to endothelial cells, promotion of angiogenesis, modulation of histamine and lipid mediator release as well as azurophil granule release [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Puneet P, Moochhala S, Bhatia M (2005) Chemokines in acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol 288: L3–L15

    Article  PubMed  CAS  Google Scholar 

  2. Carter PH (2002) Chemokine receptor antagonism as an approach to anti-inflammatory therapy: ‘just right’ or plain wrong? Curr Opin Chem Biol 6: 510–525

    Article  PubMed  CAS  Google Scholar 

  3. Baggiolini M (1993) Chemotactic and inflammatory cytokines — CXC and CC proteins. Adv Exp Med Biol 351: 1–11

    PubMed  CAS  Google Scholar 

  4. Baggiolini M, Dewald B, Moser B (1994) Interleukin-8 and related chemotactic cytokines — CXC and CC chemokines. Adv Immunol 55: 97–179

    PubMed  CAS  Google Scholar 

  5. Mukaida N, Harada A, Matsushima K (1995) A novel leukocyte chemotactic and activating cytokine, interleukin-8 (IL-8). Cancer Treat Res 80: 261–286

    PubMed  CAS  Google Scholar 

  6. Altstaedt J, Kirchner H, Rink L (1996) Cytokine production of neutrophils is limited to interleukin-8. Immunology 89: 563–568

    Article  PubMed  CAS  Google Scholar 

  7. Ryu J-S, Kang J-H, Jung S-Y, Shin M-H, Kim J-M, Park H, Min D-Y (2004) Production of interleukin-8 by human neutrophils stimulated with Trichomonas vaginalis. Infect Immun 72: 1326–1332

    Article  PubMed  CAS  Google Scholar 

  8. Arbabi S, Rosengart MR, Garcia I, Jelacic S, Maier RV (1999) Priming interleukin 8 production: role of platelet-activating factor and p38. Arch Surg 134: 1348–1353

    Article  PubMed  CAS  Google Scholar 

  9. Moller A, Lippert U, Lessmann D, Kolde G, Hamann K, Welker P, Schadendorf D, Rosenbach T, Luger T, Czarnetzki BM (1993) Human mast cells produce IL-8. J Immunol 151: 3261–3266

    PubMed  CAS  Google Scholar 

  10. Burns MJ, Sellati TJ, Teng EI, Furie MB (1997) Production of interleukin-8 (IL-8) by cultured endothelial cells in response to Borrelia burgdorferi occurs independently of secreted [corrected] IL-1 and tumor necrosis factor alpha and is required for subsequent transendothelial migration of neutrophils [published erratum appears in Infect Immun (1997) Jun; 65(6): 2508]. Infect Immun 65: 1217–1222

    PubMed  CAS  Google Scholar 

  11. Smith RS, Fedyk ER, Springer TA, Mukaida N, Iglewski BH, Phipps RP (2001) IL-8 production in human lung fibroblasts and epithelial cells activated by the Pseudomonas autoinducer N-3-Oxododecanoyl homoserine lactone is transcriptionally regulated by NF-kappaB and Activator Protein-2. J Immunol 167: 366–374

    PubMed  CAS  Google Scholar 

  12. Li J, Ireland GW, Farthing PM, Thornhill MH (1996) Epidermal and oral keratinocytes are induced to produce RANTES and IL-8 by cytokine stimulation. J Invest Dermatol 106: 661–666

    Article  PubMed  CAS  Google Scholar 

  13. Gomez-Quiroz LE, Paris R, Lluis JM, Bucio L, Souza V, Hernandez E, Gutierrez M, Santiago M, Garcia-Ruiz C, Fernandez-Checa JC et al (2005) Differential modulation of interleukin 8 by interleukin 4 and interleukin 10 in HepG2 cells treated with acetaldehyde. Liver Int 25: 122–130

    Article  PubMed  CAS  Google Scholar 

  14. Rougier F, Cornu E, Praloran V, Denizot Y (1998) IL-6 and IL-8 production by human bone marrow stromal cells. Cytokine 10: 93–97

    Article  PubMed  CAS  Google Scholar 

  15. Schulte R, Grassl GA, Preger S, Fessele S, Jacobi CA, Schaller M, Nelson PJ, Autenrieth IB (2000) Yersinia enterocolitica invasin protein triggers IL-8 production in epithelial cells via activation of Rel p65-p65 homodimers. FASEB J 14: 1471–1484

    Article  PubMed  CAS  Google Scholar 

  16. Subauste MC, Jacoby DB, Richards SM, Proud D (1995) Infection of a human respiratory epithelial cell line with rhinovirus. Induction of cytokine release and modulation of susceptibility to infection by cytokine exposure. J Clin Invest 96: 549–557

    PubMed  CAS  Google Scholar 

  17. Kaplanski G, Teysseire N, Farnarier C, Kaplanski S, Lissitzky JC, Durand JM, Soubeyrand J, Dinarello CA, Bongrand P (1995) IL-6 and IL-8 production from cultured human endothelial cells stimulated by infection with Rickettsia conorii via a cell-associated IL-1 alpha-dependent pathway. J Clin Invest 96: 2839–2844

    PubMed  CAS  Google Scholar 

  18. Van den Steen PE, Proost P, Wuyts A, Van Damme J, Opdenakker G (2000) Neutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4, and GRO-alpha and leaves RANTES and MCP-2 intact. Blood 96: 2673–2681

    PubMed  Google Scholar 

  19. Van Den Steen PE, Wuyts A, Husson SJ, Proost P, Van Damme J, Opdenakker G (2003) Gelatinase B/MMP-9 and neutrophil collagenase/MMP-8 process the chemokines human GCP-2/CXCL6, ENA-78/CXCL5 and mouse GCP-2/LIX and modulate their physiological activities. Eur J Biochem 270: 3739–3749

    Article  CAS  Google Scholar 

  20. Mukaida N (2000) Interleukin-8: an expanding universe beyond neutrophil chemotaxis and activation. Int J Hematol 72: 391–398

    PubMed  CAS  Google Scholar 

  21. Moser B, Dewald B, Barella L, Schumacher C, Baggiolini M, Clark-Lewis I (1993) Interleukin-8 antagonists generated by N-terminal modification. J Biol Chem 268: 7125–7128

    PubMed  CAS  Google Scholar 

  22. Li F, Zhang X, Gordon JR (2002) CXCL8((3-73))K11R/G31P antagonizes ligand binding to the neutrophil CXCR1 and CXCR2 receptors and cellular responses to CXCL8/IL-8. Biochem Biophys Res Commun 293: 939–944

    Article  PubMed  CAS  Google Scholar 

  23. Jones SA, Dewald B, Clark-Lewis I, Baggiolini M (1997) Chemokine antagonists that discriminate between interleukin-8 receptors. Selective blockers of CXCR2. J Biol Chem 272: 16166–16169

    Article  PubMed  CAS  Google Scholar 

  24. Zagorski J, Wahl SM (1997) Inhibition of acute peritoneal inflammation in rats by a cytokine-induced neutrophil chemoattractant receptor antagonist. J Immunol 159: 1059–1062

    PubMed  CAS  Google Scholar 

  25. Huang S, Mills L, Mian B, Tellez C, McCarty M, Yang XD, Gudas JM, Bar-Eli M (2002) Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma. Am J Pathol 161: 125–134

    PubMed  CAS  Google Scholar 

  26. Yang XD, Corvalan JR, Wang P, Roy CM, Davis CG (1999) Fully human anti-interleukin-8 monoclonal antibodies: potential therapeutics for the treatment of inflammatory disease states. J Leukoc Biol 66: 401–410

    PubMed  CAS  Google Scholar 

  27. White JR, Lee JM, Young PR, Hertzberg RP, Jurewicz AJ, Chaikin MA, Widdowson J, Foley JJ, Martin LD, Griswold DE (1998) Identification of a potent, selective non-peptide CXCR2 antagonist that inhibits interleukin-8-induced neutrophil migration. J Biol Chem 273: 10095–10098

    Article  PubMed  CAS  Google Scholar 

  28. Glynn PC, Henney E, Hall IP (2002) The selective CXCR2 antagonist SB272844 blocks interleukin-8 and growth-related oncogene-alpha-mediated inhibition of spontaneous neutrophil apoptosis. Pulm Pharmacol Ther 15: 103–110

    Article  PubMed  CAS  Google Scholar 

  29. Hay DW, Sarau HM (2001) Interleukin-8 receptor antagonists in pulmonary diseases. Curr Opin Pharmacol 1: 242–247

    Article  PubMed  CAS  Google Scholar 

  30. Podolin PL, Bolognese BJ, Foley JJ, Schmidt DB, Buckley PT, Widdowson KL, Jin Q, White JR, Lee JM, Goodman RB et al (2002) A potent and selective nonpeptide antagonist of CXCR2 inhibits acute and chronic models of arthritis in the rabbit. J Immunol 169: 6435–6444

    PubMed  CAS  Google Scholar 

  31. Milatovic S, Nanney LB, Yu Y, White JR, Richmond A (2003) Impaired healing of nitrogen mustard wounds in CXCR2 null mice. Wound Repair Regen 11: 213–219

    Article  PubMed  Google Scholar 

  32. Stevenson CS, Coote K, Webster R, Johnston H, Atherton HC, Nicholls A, Giddings J, Sugar R, Jackson A, Press NJ et al (2005) Characterization of cigarette smoke-induced inflammatory and mucus hypersecretory changes in rat lung and the role of CXCR2 ligands in mediating this effect. Am J Physiol Lung Cell Mol Physiol 288: L514–L522

    Article  PubMed  CAS  Google Scholar 

  33. Jin Q, Nie H, McCleland BW, Widdowson KL, Palovich MR, Elliott JD, Goodman RM, Burman M, Sarau HM, Ward KW et al (2004) Discovery of potent and orally bioavailable N,N’-diarylurea antagonists for the CXCR2 chemokine receptor. Bioorg Med Chem Lett 14: 4375–4378

    Article  PubMed  CAS  Google Scholar 

  34. Widdowson KL, Elliott JD, Veber DF, Nie H, Rutledge MC, McCleland BW, Xiang JN, Jurewicz AN, Hertzberg RP, Foley JJ et al (2004) Evaluation of potent and selective small-molecule antagonists for the CXCR2 chemokine receptor. J Med Chem 47: 1319–1321

    Article  PubMed  CAS  Google Scholar 

  35. Cutshall NS, Ursino R, Kucera KA, Latham J, Ihle NC (2001) Nicotinamide N-oxides as CXCR2 antagonists. Bioorg Med Chem Lett 11: 1951–1954

    Article  PubMed  CAS  Google Scholar 

  36. Cutshall NS, Kucera KA, Ursino R, Latham J, Ihle NC (2002) Nicotinanilides as inhibitors of neutrophil chemotaxis. Bioorg Med Chem Lett 12: 1517–1520

    Article  PubMed  CAS  Google Scholar 

  37. Baxter A, Bennion C, Bent J, Boden K, Brough S, Cooper A, Kinchin E, Kindon N, McInally T, Mortimore M et al (2003) Hit-to-lead studies: the discovery of potent, orally bioavailable triazolethiol CXCR2 receptor antagonists. Bioorg Med Chem Lett 13: 2625–2628

    Article  PubMed  CAS  Google Scholar 

  38. Li JJ, Carson KG, Trivedi BK, Yue WS, Ye Q, Glynn RA, Miller SR, Connor DT, Roth BD, Luly JR et al (2003) Synthesis and structure-activity relationship of 2-amino-3-heteroaryl-quinoxalines as non-peptide, small-molecule antagonists for interleukin-8 receptor. Bioorg Med Chem 11: 3777–3790

    Article  PubMed  CAS  Google Scholar 

  39. Casilli F, Bianchini A, Gloaguen I, Biordi L, Alesse E, Festuccia C, Cavalieri B, Strippoli R, Cervellera MN, Di Bitondo R et al (2005) Inhibition of interleukin-8 (CXCL8/IL-8) responses by repertaxin, a new inhibitor of the chemokine receptors CXCR1 and CXCR2. Biochem Pharmacol 69: 385–394

    Article  PubMed  CAS  Google Scholar 

  40. Bertini R, Allegretti M, Bizzarri C, Moriconi A, Locati M, Zampella G, Cervellera MN, Di Cioccio V, Cesta MC, Galliera E et al (2004) Noncompetitive allosteric inhibitors of the inflammatory chemokine receptors CXCR1 and CXCR2: prevention of reperfusion injury. Proc Natl Acad Sci USA 101: 11791–11796

    Article  PubMed  CAS  Google Scholar 

  41. Strieter RM, Belperio JA, Burdick MD, Sharma S, Dubinett SM, Keane MP (2004) CXC chemokines: angiogenesis, immunoangiostasis, and metastases in lung cancer. Ann NY Acad Sci 1028: 351–360

    Article  PubMed  CAS  Google Scholar 

  42. Strieter RM, Belperio JA, Phillips RJ, Keane MP (2004) CXC chemokines in angiogenesis of cancer. Semin Cancer Biol 14: 195–200

    Article  PubMed  CAS  Google Scholar 

  43. Rosenkilde MM, Schwartz TW (2004) The chemokine system-a major regulator of angiogenesis in health and disease. Apmis 112: 481–495

    Article  PubMed  CAS  Google Scholar 

  44. Scheibenbogen C, Mohler T, Haefele J, Hunstein W, Keilholz U (1995) Serum interleukin-8 (IL-8) is elevated in patients with metastatic melanoma and correlates with tumour load. Melanoma Res 5: 179–181

    Article  PubMed  CAS  Google Scholar 

  45. Haghnegahdar H, Du J, Wang D, Strieter RM, Burdick MD, Nanney LB, Cardwell N, Luan J, Shattuck-Brandt R, Richmond A (2000) The tumorigenic and angiogenic effects of MGSA/GRO proteins in melanoma. J Leukoc Biol 67: 53–62

    PubMed  CAS  Google Scholar 

  46. Li A, Dubey S, Varney ML, Dave BJ, Singh RK (2003) IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol 170: 3369–3376

    PubMed  CAS  Google Scholar 

  47. McCawley LJ, Matrisian LM (2000) Matrix metalloproteinases: multifunctional contributors to tumor progression. Mol Med Today 6: 149–156

    Article  PubMed  CAS  Google Scholar 

  48. Sparmann A, Bar-Sagi D (2004) Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 6: 447–458

    Article  PubMed  CAS  Google Scholar 

  49. Addison CL, Daniel TO, Burdick MD, Liu H, Ehlert JE, Xue YY, Buechi L, Walz A, Richmond A, Strieter RM (2000) The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR+ CXC chemokine-induced angiogenic activity. J Immunol 165: 5269–5277

    PubMed  CAS  Google Scholar 

  50. Heidemann J, Ogawa H, Dwinell MB, Rafiee P, Maaser C, Gockel HR, Otterson MF, Ota DM, Lugering N, Domschke W et al (2003) Angiogenic effects of interleukin 8 (CXCL8) in human intestinal microvascular endothelial cells are mediated by CXCR2. J Biol Chem 278: 8508–8515

    Article  PubMed  CAS  Google Scholar 

  51. Keane MP, Belperio JA, Xue YY, Burdick MD, Strieter RM (2004) Depletion of CXCR2 inhibits tumor growth and angiogenesis in a murine model of lung cancer. J Immunol 172: 2853–2860

    PubMed  CAS  Google Scholar 

  52. Yamamoto C, Yoneda T, Yoshikawa M, Fu A, Tokuyama T, Tsukaguchi K, Narita N (1997) Airway inflammation in COPD assessed by sputum levels of interleukin-8. Chest 112: 505–510

    PubMed  CAS  Google Scholar 

  53. Hill AT, Bayley D, Stockley RA (1999) The interrelationship of sputum inflammatory markers in patients with chronic bronchitis. Am J Respir Crit Care Med 160: 893–898

    PubMed  CAS  Google Scholar 

  54. Keatings VM, Collins PD, Scott DM, Barnes PJ (1996) Differences in interleukin-8 and tumor necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma. Am J Respir Crit Care Med 153: 530–534

    PubMed  CAS  Google Scholar 

  55. Traves SL, Culpitt SV, Russell RE, Barnes PJ, Donnelly LE (2002) Increased levels of the chemokines GROalpha and MCP-1 in sputum samples from patients with COPD. Thorax 57: 590–595

    Article  PubMed  CAS  Google Scholar 

  56. Pesci A, Balbi B, Majori M, Cacciani G, Bertacco S, Alciato P, Donner CF (1998) Inflammatory cells and mediators in bronchial lavage of patients with chronic obstructive pulmonary disease. Eur Respir J 12: 380–386

    Article  PubMed  CAS  Google Scholar 

  57. Williams TJ, Jose PJ (2001) Neutrophils in chronic obstructive pulmonary disease. Novartis Found Symp 234: 136–141

    PubMed  CAS  Google Scholar 

  58. Aaron SD, Angel JB, Lunau M, Wright K, Fex C, Le Saux N, Dales RE (2001) Granulocyte inflammatory markers and airway infection during acute exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 163: 349–355

    PubMed  CAS  Google Scholar 

  59. Drost EM, Skwarski KM, Sauleda J, Soler N, Roca J, Agusti A, MacNee W (2005) Oxidative stress and airway inflammation in severe exacerbations of COPD. Thorax 60: 293–300

    Article  PubMed  CAS  Google Scholar 

  60. Wedzicha JA (2001) Mechanisms of exacerbations. Novartis Found Symp 234: 84–93

    Article  PubMed  CAS  Google Scholar 

  61. Pryor WA, Dooley MM, Church DF (1985) Mechanisms of cigarette smoke toxicity: the inactivation of human alpha-1-proteinase inhibitor by nitric oxide/isoprene mixtures in air. Chem Biol Interact 54: 171–183

    Article  PubMed  CAS  Google Scholar 

  62. Barnes PJ (2003) Cytokine-directed therapies for the treatment of chronic airway diseases. Cytokine Growth Factor Rev 14: 511–522

    Article  PubMed  CAS  Google Scholar 

  63. Reutershan J, Ley K (2004) Bench-to-bedside review: acute respiratory distress syndrome — how neutrophils migrate into the lung. Crit Care 8: 453–461

    Article  PubMed  Google Scholar 

  64. Martin TR (1999) Lung cytokines and ARDS: Roger S. Mitchell Lecture. Chest 116: 2S–8S

    Article  PubMed  CAS  Google Scholar 

  65. Goodman RB, Strieter RM, Martin DP, Steinberg KP, Milberg JA, Maunder RJ, Kunkel SL, Walz A, Hudson LD, Martin TR (1996) Inflammatory cytokines in patients with persistence of the acute respiratory distress syndrome. Am J Respir Crit Care Med 154: 602–611

    PubMed  CAS  Google Scholar 

  66. Pallister I, Dent C, Topley N (2002) Increased neutrophil migratory activity after major trauma: a factor in the etiology of acute respiratory distress syndrome? Crit Care Med 30: 1717–1721

    Article  PubMed  Google Scholar 

  67. Kurdowska AK, Geiser TK, Alden SM, Dziadek BR, Noble JM, Nuckton TJ, Matthay MA (2002) Activity of pulmonary edema fluid interleukin-8 bound to alpha(2)-macroglobulin in patients with acute lung injury. Am J Physiol Lung Cell Mol Physiol 282: L1092–L1098

    PubMed  CAS  Google Scholar 

  68. Jobe AH, Ikegami M (1998) Mechanisms initiating lung injury in the preterm. Early Hum Dev 53: 81–94

    Article  PubMed  CAS  Google Scholar 

  69. Deng H, Mason SN, Auten RL Jr (2000) Lung inflammation in hyperoxia can be prevented by antichemokine treatment in newborn rats. Am J Respir Crit Care Med 162: 2316–2323

    PubMed  CAS  Google Scholar 

  70. Auten RL, Richardson RM, White JR, Mason SN, Vozzelli MA, Whorton MH (2001) Nonpeptide CXCR2 antagonist prevents neutrophil accumulation in hyperoxia-exposed newborn rats. J Pharmacol Exp Ther 299: 90–95

    PubMed  CAS  Google Scholar 

  71. Broxmeyer HE, Kohli L, Kim CH, Lee Y, Mantel C, Cooper S, Hangoc G, Shaheen M, Li X, Clapp DW (2003) Stromal cell-derived factor-1/CXCL12 directly enhances survival/ antiapoptosis of myeloid progenitor cells through CXCR4 and G(alpha)i proteins and enhances engraftment of competitive, repopulating stem cells. J Leukoc Biol 73: 630–638

    Article  PubMed  CAS  Google Scholar 

  72. Zhu YM, Webster SJ, Flower D, Woll PJ (2004) Interleukin-8/CXCL8 is a growth factor for human lung cancer cells. Br J Cancer 91: 1970–1976

    Article  PubMed  CAS  Google Scholar 

  73. Gillitzer R, Ritter U, Spandau U, Goebeler M, Brocker EB (1996) Differential expression of GRO-alpha and IL-8 mRNA in psoriasis: a model for neutrophil migration and accumulation in vivo. J Invest Dermatol 107: 778–782

    Article  PubMed  CAS  Google Scholar 

  74. Goebeler M, Toksoy A, Spandau U, Engelhardt E, Brocker EB, Gillitzer R (1998) The C-X-C chemokine Mig is highly expressed in the papillae of psoriatic lesions. J Pathol 184: 89–95

    Article  PubMed  CAS  Google Scholar 

  75. Benoit S, Toksoy A, Brocker EB, Gillitzer R, Goebeler M (2004) Treatment of recalcitrant pustular psoriasis with infliximab: effective reduction of chemokine expression. Br J Dermatol 150: 1009–1012

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

White, J.R., Sarau, H.M. (2007). IL-8 receptor antagonist: basic research and clinical utility. In: Neote, K., Letts, G.L., Moser, B. (eds) Chemokine Biology — Basic Research and Clinical Application. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7437-2_7

Download citation

Publish with us

Policies and ethics