Skip to main content

Proteomic profiling of cellular stresses in Bacillus subtilis reveals cellular networks and assists in elucidating antibiotic mechanisms of action

  • Chapter
Systems Biological Approaches in Infectious Diseases

Part of the book series: Progress in Drug Research ((PDR,volume 64))

Abstract

Proteomic profiling provides a global view of the protein composition of the cell. In contrast to the static nature of the genome sequence, which provides the blueprint for all protein-based cellular building blocks, the proteome is highly dynamic. The protein composition is constantly adjusting to facilitate survival, growth, and reproduction in an ever-changing environment. In a quest to understand the regulation of cellular networks in bacteria and the role of individual proteins in the adaptation process, the proteomic response to stress and starvation was analyzed in wild-type and mutant strains. The knowledge derived from these proteomic studies was applied to investigating the bacterial response to antibiotics. It was found that proteomics presents a powerful tool for hypothesis generation regarding antibiotic mechanism of action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Piggot PJ, Hilbert DW (2004) Sporulation of Bacillus subtilis. Curr Opin Microbiol 7: 579–586

    Article  PubMed  CAS  Google Scholar 

  2. Wachlin G, Hecker M (1984) Protein biosynthesis following heat shock in Bacillus subtilis. Z Allg Mikrobiol 24: 397–401 (German)

    PubMed  CAS  Google Scholar 

  3. Richter A, Hecker M (1986) Heat-shock proteins in Bacillus subtilis: a two-dimensional electrophoresis study. FEMS Microbiol Lett 36: 69–71

    Article  CAS  Google Scholar 

  4. O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250: 4007–4021

    PubMed  CAS  Google Scholar 

  5. Klose J (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. Humangenetik 26: 231–243

    PubMed  CAS  Google Scholar 

  6. Buttner K, Bernhardt J, Scharf C, Schmid R, Mader U, Eymann C, Antelmann H, Volker A, Volker U, Hecker M (2001) A comprehensive two-dimensional map of cytosolic proteins of Bacillus subtilis. Electrophoresis 22: 2908–2935

    Article  PubMed  CAS  Google Scholar 

  7. Eymann C, Dreisbach A, Albrecht D, Bernhardt J, Becher D, Gentner S, Tam le T, Buttner K, Buurman G, Scharf C et al (2004) A comprehensive proteome map of growing Bacillus subtilis cells. Proteomics 4: 2849–2876

    Article  PubMed  CAS  Google Scholar 

  8. Bernhardt J, Buttner K, Scharf C, Hecker M (1999) Dual channel imaging of two-dimensional electropherograms in Bacillus subtilis. Electrophoresis 20: 2225–2240

    Article  PubMed  CAS  Google Scholar 

  9. Henzel WJ, Billeci TM, Stults JT, Wong SC, Grimley C, Watanabe C (1993) Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc Natl Acad Sci USA 90: 5011–5015

    Article  PubMed  CAS  Google Scholar 

  10. Mann M, Hendrickson RC, Pandey A (2001) Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem 70: 437–473

    Article  PubMed  CAS  Google Scholar 

  11. Volker U, Engelmann S, Maul B, Riethdorf S, Volker A, Schmid R, Mach H, Hecker M (1994) Analysis of the induction of general stress proteins of Bacillus subtilis. Microbiology 140: 741–752

    Article  PubMed  Google Scholar 

  12. Antelmann H, Bernhardt J, Schmid R, Mach H, Volker U, Hecker M (1997) First steps from a two-dimensional protein index towards a response-regulation map of Bacillus subtilis. Electrophoresis 18: 1451–1463

    Article  PubMed  CAS  Google Scholar 

  13. Bernhardt J, Weibezahn J, Scharf C, Hecker M (2003) Bacillus subtilis during feast and famine: visualization of the overall regulation of protein synthesis during glucose starvation by proteome analysis. Genome Res 13: 224–237

    Article  PubMed  CAS  Google Scholar 

  14. Zuber U, Schuman W (1994) CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis. J Bacteriol 176: 1359–1363

    PubMed  CAS  Google Scholar 

  15. Benson AK, Haldenwang WG (1993) The sigmaB-dependent promoter of the Bacillus subtilis sigB operon is induced by heat shock. J Bacteriol 175: 1929–1935

    PubMed  CAS  Google Scholar 

  16. Kruger E, Hecker M (1998) The first gene of the Bacillus subtilis clpC operon, ctsR, encodes a negative regulator of its own operon and other class III heat shock genes. J Bacteriol 180: 6681–6688

    PubMed  CAS  Google Scholar 

  17. Derre I, Rapoport G, Masdek T (2000) The CtsR regulator of stress is active as a dimer and specifically degraded in vivo at 37 degrees C. Mol Microbiol 38: 335–347

    Article  PubMed  CAS  Google Scholar 

  18. Darmon E, Noone D, Masson A, Bron S, Kuipers OP, Devine KM, van Dijl JM (2002) A novel class of heat and secretion stress-responsive genes is controlled by the autoregulated CssRS two-component system of Bacillus subtilis. J Bacteriol 184: 5661–5671

    Article  PubMed  CAS  Google Scholar 

  19. Kruger E, Msadek T, Hecker M (1996) Alternate promoters direct stress-induced transcription of the Bacillus subtilis clpC operon. Mol Microbiol 20: 713–723

    Article  PubMed  CAS  Google Scholar 

  20. Hecker M, Völker U (1998) Non-specific, general and multiple stress resistance of growth-restricted Bacillus subtilis cells by the expression of the σ B regulon. Mol Microbiol 29: 1129–1136

    Article  PubMed  CAS  Google Scholar 

  21. Brody MS, Vijay K, Price CW (2001) Catalytic function of an alpha/beta hydrolase is required for energy stress activation of the sigma(B) transcription factor in Bacillus subtilis. J Bacteriol 183: 6422–6428

    Article  PubMed  CAS  Google Scholar 

  22. Eymann C, Homuth G, Scharf C, Hecker M (2002) Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis. J Bacteriol 184: 2500–2520

    Article  PubMed  CAS  Google Scholar 

  23. Koburger T, Weibezahn J, Bernhardt J, Homuth G, Hecker M (2005) Genome-wide mRNA profiling in glucose starved Bacillus subtilis cells. Mol Genet Genomics 274: 1–12

    Article  PubMed  CAS  Google Scholar 

  24. VanBogelen RA, Neidhardt FC (1990) Ribosomes as sensors of heat and cold shock in Escherichia coli. Proc Natl Acad Sci USA 87: 5589–5593

    Article  PubMed  CAS  Google Scholar 

  25. VanBogelen RA, Schiller E, Thomas JD, Neidhardt FC (1999) Diagnosis of cellular states of microbial organisms using proteomics. Electrophoresis 20: 2149–2159

    Article  PubMed  CAS  Google Scholar 

  26. Mosterz J, Scharf C, Hecker M, Homuth (2004) Transcriptome and proteome analysis of Bacillus subtilis gene expression in response to superoxide and peroxide stress. Microbiol 150: 497–512

    Article  CAS  Google Scholar 

  27. Leichert LI, Scharf C, Hecker M (2003) Global characterization of disulfide stress in Bacillus subtilis. J Bacteriol 185: 1967–1975

    Article  PubMed  CAS  Google Scholar 

  28. Leichert LI, Jakob U (2004) Protein thiol modifications visualized in vivo. PloS Biol 2: e333

    Article  PubMed  CAS  Google Scholar 

  29. Hochgraefe F, Mostertz J, Albrecht D, Hecker M (2005) Fluorescence thiol modification assay: oxidatively modified proteins in Bacillus subtilis. Mol Microbiol 58: 409–425

    Article  CAS  Google Scholar 

  30. Yang Y, Loscalzo J (2005) S-nitrosoprotein formation and localization in endothelial cells. Proc Natl Acad Sci USA 102: 117–122

    Article  PubMed  CAS  Google Scholar 

  31. Rhee KY, Erdjument-Bromage H, Tempst P, Nathan CF (2005) S-nitroso proteome of Mycobacterium tuberculosis: Enzymes of intermediary metabolism and antioxidant defense. Proc Natl Acad Sci USA 102: 467–472

    Article  PubMed  CAS  Google Scholar 

  32. Levine A, Vannier F, Absalon C, Kuhn L, Jackson P, Scrivener E, Labas V, Vinh J, Courtney P, Garin J et al (2006) Analysis of the dynamic Bacillus subtilis Ser/Thr/Tyr phosphoproteome implicated in a wide variety of cellular processes. Proteomics 6: 2157–2173

    Article  PubMed  CAS  Google Scholar 

  33. Mills SD (2003) The role of genomics in antimicrobial discovery. J Antimicrob Chemother 51: 749–752

    Article  PubMed  CAS  Google Scholar 

  34. Freiberg C, Brotz-Oesterhelt H (2005b) Functional genomics in antibacterial drug discovery. Drug Discovery Today 1: 927–935

    Article  CAS  Google Scholar 

  35. Freiberg C, Fisher HP, Brunner NA (2005a) Discovering the mechanism of action of novel antibacterial agents through transcriptional profiling of conditional mutants. Antimicrob Agents Chemother 49: 749–759

    Article  PubMed  CAS  Google Scholar 

  36. Brötz-Oesterhelt H, Bandow JE, Labischinski H (2005) Bacterial proteomics and its role in antibacterial drug discovery. Mass Spectrom Rev 24: 549–565

    Article  PubMed  CAS  Google Scholar 

  37. Freiberg C, Brotz-Oesterhelt H, Labischinski H (2004) The impact of transcriptome and proteome analyses on antibiotic drug discovery. Curr Opin Microbiol 7: 451–459

    Article  PubMed  CAS  Google Scholar 

  38. Bandow J, Brötz H, Leichert LIO, Labischinski H, Hecker M (2003) Proteomic approaches to understanding antibiotic action. Antimicrob Agents Chemother 47: 948–955

    Article  PubMed  CAS  Google Scholar 

  39. Bandow JE, Becher D, Buttner K, Hochgrafe F, Freiberg C, Brötz H, Hecker M (2003). The role of peptide deformylase in protein biosynthesis: a proteomic study. Proteomics 3: 299–306

    Article  PubMed  CAS  Google Scholar 

  40. Brötz-Oesterhelt H, Beyer D, Kroll HP, Schroeder W, Hinzen B, Raddatz S, Paulsen H, Bandow JE, Sahl HG, Labischinski H (2005) Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nat Med 11: 1082–1087

    Article  PubMed  CAS  Google Scholar 

  41. Beyer D, Kroll HP, Endermann R, Schiffer G, Siegel S, Bauser M, Pohlmann J, Brands M, Ziegelbauer K, Haebich D et al (2004) New class of bacterial phenylalanyl-tRNA synthetase inhibitors with high potency and broad-spectrum activity. Antimicrob Agents Chemother 48: 525–532

    Article  PubMed  CAS  Google Scholar 

  42. Boddecker N, Bahador G, Gibbs C, Mabery E, Wolf J, Xu L, Watson J (2002) Characterization of a novel antibacterial agent that inhibits bacterial translation. RNA 8: 1120–1128

    Article  CAS  Google Scholar 

  43. Apfel CM, Locher H, Evers S, Takacs B, Hubschwerlen C, Pirson W, Page MG, Keck W (2001) Peptide deformylase as an antibacterial drug target: target validation and resistance development. Antimicrob Agents Chemother 45: 1058–1064

    Article  PubMed  CAS  Google Scholar 

  44. Boshoff HI, Myers TG, Copp BR, McNeil MR, Wilson MA, Barry CE 3rd (2004) The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J Biol Chem 279: 40174–40184

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag

About this chapter

Cite this chapter

Bandow, J.E., Hecker, M. (2007). Proteomic profiling of cellular stresses in Bacillus subtilis reveals cellular networks and assists in elucidating antibiotic mechanisms of action. In: Boshoff, H.I., Barry, C.E. (eds) Systems Biological Approaches in Infectious Diseases. Progress in Drug Research, vol 64. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7567-6_4

Download citation

Publish with us

Policies and ethics