Skip to main content

Algebraic Approach to Quantum Gravity III: Non-Commmutative Riemannian Geometry

  • Chapter
Quantum Gravity

Abstract

This is a self-contained introduction to quantum Riemannian geometry based on quantum groups as frame groups, and its proposed role in quantum gravity. Much of the article is about the generalisation of classical Riemannian geometry that arises naturally as the classical limit; a theory with nonsymmetric metric and a skew version of metric compatibilty. Meanwhile, in quantum gravity a key ingredient of our approach is the proposal that the differential structure of spacetime is something that itself must be summed over or ‘quantised’ as a physical degree of freedom. We illustrate such a scheme for quantum gravity on small finite sets.

The work was completed on leave at the Mathematical Institute, Oxford, UK.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.J. Beggs and S. Majid, Poisson-Lie T-Duality for Quasitriangular Lie Bialgebras. Commun. Math. Phys. 220:455–488, 2001.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. E.J. Beggs and S. Majid. Semiclassical Differential Structures, to appear Pac. J. Math., 2006.

    Google Scholar 

  3. E.J. Beggs and S. Majid. Quantization by Cochain Twists and Nonassociative Differentials. Preprint Math.QA/0506450.

    Google Scholar 

  4. T. Brzeziński and S. Majid. Quantum Group Gauge Theory on Quantum Spaces. Commun. Math. Phys., 157:591–638, 1993. Erratum 167:235, 1995.

    Article  ADS  MATH  Google Scholar 

  5. T. Brzeziński and S. Majid. Quantum Differentials and the q-Monopole Revisited. Acta Appl. Math., 54:185–232, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  6. T. Brzezinski and S. Majid. Quantum Geometry of Algebra Factorisations and Coalgebra Bundles. Commun. Math. Phys 213 (2000) 491–521.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. A. Connes. Noncommutative Geometry. Academic Press, 1994.

    Google Scholar 

  8. A Connes and C. Rovelli. Von Neumann Algebra Automorphisms and Time-Thermodynamics Relation in Generally Covariant Quantum Theories. Class. Quantum Grav. 11: 2899–2917, 1994.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. X. Gomez and S. Majid. Noncommutative Cohomology and Electromagnetism on Cq[SL2] at Roots of Unity. Lett. Math. Phys. 60:221–237, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  10. X. Gomez and S. Majid. Braided Lie Algebras and Bicovariant Differential Calculi over Coquasitriangular Hopf Algebras. J. Algebra 261: 334–388, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  11. P. Hajac and S. Majid. Projective Module Description of the q-Monopole. Commun. Math. Phys., 206:246–464, 1999.

    Article  ADS  MathSciNet  Google Scholar 

  12. E. Hawkins. Noncommutative Rigidity. Commun. Math. Phys. 246:211–235, 2004.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. F. Ngakeu, S. Majid and D. Lambert. Noncommutative Riemannian Geometry of the Alternating Group A 4. J. Geom. Phys. 42: 259–282, 2002.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. S. Majid. Algebraic Approach to Quantum Gravity II: Noncommutative Spacetime. To appear in D. Oriti, ed., Cambridge Univ. Press; hep-th/0604130.

    Google Scholar 

  15. S. Majid. Foundations of Quantum Group Theory. Cambridge Univeristy Press, 1995.

    Google Scholar 

  16. S. Majid. The Principle of Representation-theoretic Self-duality. Phys. Essays. 4:395–405, 1991.

    Article  ADS  Google Scholar 

  17. S. Majid. Representations, Duals and Quantum Doubles of Monoidal Categories. Suppl. Rend. Circ. Mat. Palermo., Series II 26, 197–206, 1991.

    MathSciNet  Google Scholar 

  18. S. Majid. Hopf Algebras for Physics at the Planck Scale. J. Classical and Quantum Gravity, 5:1587–1606, 1988.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. S. Majid. Quantum and Braided Lie-algebras. J. Geom. Phys. 13:307–356, 1994.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. S. Majid. Diagrammatics of Braided Group Gauge Theory. J. Knot Th. Ramif. 8:731–771, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  21. S. Majid. Quantum and Braided Group Riemannian Geometry. J. Geom. Phys., 30:113–146, 1999.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. S. Majid. Riemannian Geometry of Quantum Groups and Finite Groups with Nonuniversal Differentials. Commun. Math. Phys. 225:131–170, 2002.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. S. Majid. Noncommutative Physics on Lie Algebras, ℤ n2 Lattices and Clifford Algebras. In Clifford Algebras: Application to Mathematics, Physics, and Engineering, ed. R. Ablamowicz, pp. 491–518. Birkhauser, 2003.

    Google Scholar 

  24. S. Majid. Ricci Tensor and Dirac Operator on ℂq[SL 2] at Roots of Unity. Lett. Math. Phys., 63:39–54, 2003.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. S. Majid. Classification of Differentials on Quantum Doubles and Finite Noncommutative Geometry, Lect. Notes Pure Appl. Maths 239:167–188, 2004. Marcel Dekker.

    MathSciNet  Google Scholar 

  26. S. Majid. Noncommutative Riemannian and Spin Geometry of the Standard q-Sphere. Commun. Math. Phys. 256:255–285, 2005.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. S. Majid. Noncommutative Model with Spontaneous Time Generation and Planckian Bound. J. Math. Phys. 46:103520, 18pp, 2005.

    Article  MathSciNet  ADS  Google Scholar 

  28. S. Majid and E. Raineri. Electromagnetism and Gauge Theory on the Permutation Group S 3. J. Geom. Phys. 44:129–155, 2002.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. S. Majid and E. Raineri. Moduli of Quantum Riemannian Geometries on ¡= 4 Points. J. Math. Phys. 45: 4596–4627, 2004.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. S. Majid and Ya. S. Soibelman. Rank of Quantized Universal Enveloping Algebras and Modular Functions. Comm. Math. Phys. 137: 249–262, 1991.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. D. Rideout and R. Sorkin. A Classical Sequential Growth Dynamics for Causal Sets. Phys. Rev. D 61:024002, 2000.

    Article  ADS  MathSciNet  Google Scholar 

  32. S.L. Woronowicz. Differential Calculus on Compact Matrix Pseudogroups (Quantum Groups). Commun. Math. Phys., 122:125–170, 1989.

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Majid, S. (2006). Algebraic Approach to Quantum Gravity III: Non-Commmutative Riemannian Geometry. In: Fauser, B., Tolksdorf, J., Zeidler, E. (eds) Quantum Gravity. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7978-0_5

Download citation

Publish with us

Policies and ethics