Skip to main content

Part of the book series: Progress in Mathematics ((PM,volume 254))

Abstract

In this chapter, we establish the asymptotic expansion of the Bergman kernel associated to high tensor powers of a positive line bundle on a compact complex manifold. Thanks to the spectral gap property of the Kodaira Laplacian, Theorem 1.5.5, we can use the finite propagation speed of solutions of hyperbolic equations, (Theorem D.2.1), to localize our problem to a problem on ℝ2n. Comparing with Section 1.6, the key point here is that we need to extend the connection of the line bundle L such that its curvature becomes uniformly positive on ℝ2n. Then we still have the spectral gap property on ℝ2n. Thus we can instead study the Bergman kernel on ℝ2n (cf. (4.1.27)), and use various resolvent representations (4.1.59), (4.2.22) of the Bergman kernel on ℝ2n. We conclude our results by employing functional analysis resolvent techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4.3 Bibliographic notes

  1. R. Berman, B. Berndtsson, and J. Sjöstrand, Asymptotics of Bergman kernels, Preprint available at arXiv:math.CV/0506367, 2005.

    Google Scholar 

  2. J.-M. Bismut, Equivariant immersions and Quillen metrics, J. Differential Geom. 41 (1995), no. 1, 53–157. §11

    MATH  MathSciNet  Google Scholar 

  3. J.-M. Bismut and G. Lebeau, Complex immersions and Quillen metrics, Inst. Hautes Études Sci. Publ. Math. (1991), no. 74, ii+298 pp. (1992). §11

    Google Scholar 

  4. J.-M. Bismut and E. Vasserot, The asymptotics of the Ray-Singer analytic torsion associated with high powers of a positive line bundle, Comm. Math. Phys. 125 (1989), 355–367.

    Article  MATH  MathSciNet  Google Scholar 

  5. P. Bleher, B. Shiffman, and S. Zelditch, Universality and scaling of correlations between zeros on complex manifolds, Invent. Math. 142 (2000), no. 2, 351–395.

    Article  MATH  MathSciNet  Google Scholar 

  6. Th. Bouche, Convergence de la métrique de Fubini-Study d’un fibré linéare positif, Ann. Inst. Fourier (Grenoble) 40 (1990), 117–130.

    MATH  MathSciNet  Google Scholar 

  7. L. Boutet de Monvel and J. Sjöstrand, Sur la singularité des noyaux de Bergman et de Szegö, Journées: Équations aux Dérivées Partielles de Rennes (1975), Soc. Math. France, Paris, 1976, pp. 123–164. Astérisque, No. 34–35.

    Google Scholar 

  8. D. Catlin, The Bergman kernel and a theorem of Tian, Analysis and geometry in several complex variables (Katata, 1997), Trends Math., Birkhäuser Boston, Boston, MA, 1999, pp. 1–23.

    Google Scholar 

  9. L. Charles, Berezin-Toeplitz operators, a semi-classical approach, Comm. Math. Phys. 239 (2003), 1–28.

    Article  MATH  MathSciNet  Google Scholar 

  10. X. Dai, K. Liu, and X. Ma, On the asymptotic expansion of Bergman kernel, J. Differential Geom. 72 (2006), no. 1, 1–41; announced in C. R. Math. Acad. Sci. Paris 339 (2004), no. 3, 193–198. §5

    MATH  MathSciNet  Google Scholar 

  11. S.K. Donaldson, Planck’s constant in complex and almost-complex geometry, XIIIth International Congress on Mathematical Physics (London, 2000), Int. Press, Boston, MA, 2001, pp. 63–72.

    Google Scholar 

  12. S.K. Donaldson, Some numerical results in complex differential geometry, (2006), math.DG/0512625.

    Google Scholar 

  13. C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1–65.

    Article  MATH  MathSciNet  Google Scholar 

  14. L. Hörmander, An introduction to complex analysis in several variables, 1966, third ed., North-Holland Mathematical Library, vol. 7, North-Holland Publishing Co., Amsterdam, 1990.

    MATH  Google Scholar 

  15. A.V. Karabegov and M. Schlichenmaier, Identification of Berezin-Toeplitz deformation quantization, J. Reine Angew. Math. 540 (2001), 49–76.

    MATH  MathSciNet  Google Scholar 

  16. K. Liu and X. Ma, A remark on’ some numerical results in complex differential geometry’, Math. Res. Lett. 14 (2007), 165–171.

    Article  MATH  MathSciNet  Google Scholar 

  17. Z. Lu, On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch, Amer. J. Math. 122 (2000), no. 2, 235–273.

    MATH  MathSciNet  Google Scholar 

  18. Z. Lu and G. Tian, The log term of the Szegõ kernel, Duke Math. J. 125 (2004), no. 2, 351–387.

    Article  MATH  MathSciNet  Google Scholar 

  19. X. Ma and G. Marinescu, Generalized Bergman kernels on symplectic manifolds, C. R. Acad. Sci. Paris 339 (2004), no. 7, 493–498, The full version: math.DG/0411559, Adv. in Math. §3.4

    MATH  MathSciNet  Google Scholar 

  20. X. Ma and W. Zhang, Bergman kernels and symplectic reduction, C. R. Math. Acad. Sci. Paris 341 (2005), 297–302, see also Toeplitz quantization and symplectic reduction, Nankai Tracts in Mathematics Vol. 10, World Scientific, 2006, 343–349. The full version: math.DG/0607605. §3.3

    MATH  MathSciNet  Google Scholar 

  21. X. Ma and W. Zhang, Superconnection and family Bergman kernels, C. R. Math. Acad. Sci. Paris 344 (2007), 41–44.

    MATH  MathSciNet  Google Scholar 

  22. W.-D. Ruan, Canonical coordinates and Bergmann metrics, Comm. Anal. Geom. 6 (1998), no. 3, 589–631.

    MATH  MathSciNet  Google Scholar 

  23. B. Shiffman and S. Zelditch, Asymptotics of almost holomorphic sections of ample line bundles on symplectic manifolds, J. Reine Angew. Math. 544 (2002), 181–222.

    MATH  MathSciNet  Google Scholar 

  24. G. Tian, On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom. 32 (1990), 99–130.

    MATH  MathSciNet  Google Scholar 

  25. X. Wang, Canonical metrics on stable vector bundles, Comm. Anal. Geom. 13 (2005), no. 2, 253–285.

    MATH  MathSciNet  Google Scholar 

  26. S.-T. Yau, Nonlinear analysis in geometry, Enseign. Math. (2) 33 (1987), no. 1–2, 109–158.

    MATH  MathSciNet  Google Scholar 

  27. S.-T. Yau, Perspectives on geometric analysis, Survey in Differential Geometry, X (2006), 275–379.

    Google Scholar 

  28. S. Zelditch, Szegő kernels and a theorem of Tian, Internat. Math. Res. Notices (1998), no. 6, 317–331.

    Article  MathSciNet  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag AG

About this chapter

Cite this chapter

(2007). Asymptotic Expansion of the Bergman Kernel. In: Holomorphic Morse Inequalities and Bergman Kernels. Progress in Mathematics, vol 254. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8115-8_5

Download citation

Publish with us

Policies and ethics