Skip to main content

Part of the book series: Experientia Supplementum ((EXS,volume 100))

  • 3754 Accesses

Abstract

Chemistry has long been an integral part of toxicology, as the two fields originated in much the same way: the investigation of plants with interesting properties. In this chapter I review the role that chemistry has played in understanding toxic and medicinal plants. After some introductory remarks, three broad areas are addressed: the role of natural products in understanding plant taxonomy and evolution, recent developments in chemical synthesis, especially efforts to discover and efficiently synthesize novel structures based upon naturally occurring toxins, and finally, developments in the new field of systems toxicology, which seeks to integrate all aspects of an organism’s response to toxic insult.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jacobi J (1979) Paracelsus: Selected Writings. Princeton University Press, Bollingen Series XXVIII, Princeton, NJ

    Google Scholar 

  2. Ball P (2006) The Devil’s Doctor: Paracelsus and the World of Renaissance Magic and Science. Farrar, Straus and Giroux, New York, NY

    Google Scholar 

  3. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70: 461–477

    CAS  PubMed  Google Scholar 

  4. Butler MS (2004) The role of natural product chemistry in drug discovery. J Nat Prod 67: 2141–2153

    CAS  PubMed  Google Scholar 

  5. Harvey AL (2008) Natural products in drug discovery. Drug Discov Today 13: 894–901

    CAS  PubMed  Google Scholar 

  6. Firn RD, Jones CG (2003) Natural products — A simple model to explain chemical diversity. Nat Prod Rep 20: 382–391

    CAS  PubMed  Google Scholar 

  7. Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: Distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69: 509–526

    CAS  PubMed  Google Scholar 

  8. Guo B, Wang Y, Sun X, Tang K (2008) Bioactive natural products from endophytes: A review. Appl Biochem Microbiol 44: 136–142

    CAS  Google Scholar 

  9. Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67: 257–268

    CAS  PubMed  Google Scholar 

  10. Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23: 753–771

    CAS  PubMed  Google Scholar 

  11. Firáková S, Sturdíková M, Múcková M (2007) Bioactive secondary metabolites produced by microorganisms associated with plants. Biologia 62: 251–257

    Google Scholar 

  12. Shrestha K, Strobel GA, Shrivastava SP, Gewali MB (2001) Evidence for paclitaxel from three new endophytic fungi of Himalayan Yew of Nepal. Planta Med 67: 374–376

    CAS  PubMed  Google Scholar 

  13. Stierle A, Strobel G, Stierle D, Grothaus P, Bignami G (1995) The search for a taxol-producing microorganism among the endophytic fungi of the Pacific yew, Taxus-brevifolia. J Nat Prod 58: 1315–1324

    CAS  PubMed  Google Scholar 

  14. Rehman S, Shawl AS, Kour A, Andrabi R, Sudan P, Sultan P, Verma V, Qazi GN (2008) An endophytic Neurospora sp. from Nothapodytes foetida producing camptothecin. Appl Biochem Microbiol 44: 203–209

    CAS  Google Scholar 

  15. Kusari S, Zuhlke S, Spiteller M (2009) An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J Nat Prod 72: 2–7

    CAS  PubMed  Google Scholar 

  16. Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69: 1121–1124

    CAS  PubMed  Google Scholar 

  17. Kusari S, Lamshoft M, Zühlke S, Spiteller M (2008) An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod 71: 159–162

    CAS  PubMed  Google Scholar 

  18. Frohne D, Pfänder HJ (2005) Poisonous Plants. A Handbook for Doctors, Pharmacists, Toxicologists, Biologists and Veterinarians, 2nd edn. Timber Press, Portland, OR

    Google Scholar 

  19. Nelson LS, Shih RD, Balick MJ (2007) Handbook of Poisonous and Injurious Plants, 2nd edn. The New York Botanical Garden, Springer, New York, NY

    Google Scholar 

  20. Tracy TS, Kingston RL (2007) Herbal Products: Toxicology and Clinical Pharmacology, 2nd edn. Humana Press, Totowa, NJ

    Google Scholar 

  21. Simpson MG (2006) Plant Systematics. Elsevier Academic Press, Burlington, MA

    Google Scholar 

  22. Johns T (1990) With Bitter Herbs They Shall Eat It: Chemical Ecology and the Origins of Human Diet and Medicine. University of Arizona Press, Tucson, AZ

    Google Scholar 

  23. Sertürner FWA (1805) Darstellung der reinen Mohnsäure (Opiumsäure); nebst einer chemischen Unterschuchung des Opiums, mit vorzüglicher Hinsicht auf einen darin neu entdeckten Stoff. J Pharm Ärzte Apoth Chem 14: 47–93

    Google Scholar 

  24. Hesse M (2002) Alkaloids: Nature’s Curse or Blessing? Wiley-VCH, Weinheim, Germany

    Google Scholar 

  25. De Candolle AP (1804) Essai sur les propriétés des plantes, comparées avec leur formes extérieures et leur classification naturelle. Méquignon, Paris.

    Google Scholar 

  26. Abbott HC (1896) Certain chemical constituents of plants considered in relation to their morphology and evolution. Botanical Gazette 11: 270–272

    Google Scholar 

  27. Greshoff M (1909) Phytochemical Investigations at Kew. Bulletin of Miscellaneous Information, No. 10, 397–418

    Google Scholar 

  28. Reynolds T (2007) The evolution of chemosystematics. Phytochemistry 68: 2887–2895

    CAS  PubMed  Google Scholar 

  29. Harborne JB, Turner BL (1984) Plant Chemosystematics. Academic Press, Orlando, FL

    Google Scholar 

  30. Dahlgren RMT (1980) A revised system of classification of the angiosperms. Bot J Linn Soc 80: 91–124

    Google Scholar 

  31. Bremer B, Bremer K, Chase MW, Reveal JL, Soltis DE, Soltis PS, Stevens PF, Anderberg AA, Fay MF, Goldblatt P, Judd WS, Kallersjo M (2003) An update of the Angiosperm phylogeny group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141: 399–436

    Google Scholar 

  32. Stevens PF (2001) Angiosperm Phylogeny Website, Version 9, June 2008 (http://www.mobot.org/MOBOT/research/APWeb/)

    Google Scholar 

  33. Zomlefer W (1994) Guide to Flowering Plant Families. University of North Carolina Press, NC

    Google Scholar 

  34. Herbert RB (1981) The Biosynthesis of Secondary Metabolites. Chapman and Hall, London

    Google Scholar 

  35. Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64: 3–19

    CAS  PubMed  Google Scholar 

  36. Wink M, Mohamed GIA (2003) Evolution of chemical defense traits in the Leguminosae: Mapping of distribution patterns of secondary metabolites on a molecular phylogeny inferred from nucleotide sequences of the rbcL gene. Biochem System Ecol 31: 897–917

    CAS  Google Scholar 

  37. Liscombe DK, MacLeod BP, Loukanina N, Nandi OI, Facchini PJ (2005) Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms. Phytochemistry 66: 2500–2520

    CAS  Google Scholar 

  38. Fu PP, Xia QS, Chou MW, Lin G (2007) Detection, hepatotoxicity, and tumorigenicity of pyrrolizidine alkaloids in Chinese herbal plants and herbal dietary supplements. J Food Drug Anal 15: 400–415

    CAS  Google Scholar 

  39. Mei N, Guo L, Fu PP, Heflich RH, Chen T (2005) Mutagenicity of comfrey (Symphytum officinale) in rat liver. Br J Cancer 92: 873–875

    CAS  PubMed  Google Scholar 

  40. Edgar JA, Roeder EL, Molyneux RJ (2002) Honey from plants containing pyrrolizidine alkaloids: A potential threal to health. J Agric Food Chem 50: 2719–2730

    CAS  PubMed  Google Scholar 

  41. Steenkamp V, Stewart MJ, Zuckerman M (2000) Clinical and analytical aspects of pyrrolizidine poisoning caused by South African traditional medicines. Ther Drug Monit 22: 302–306

    CAS  PubMed  Google Scholar 

  42. Fu PP, Xia QS, Lin G, Chou MW (2004) Pyrrolizidine alkaloids — Genotoxicity, metabolism enzymes, metabolic activation, and mechanisms. Drug Metab Rev 36: 1–55

    CAS  PubMed  Google Scholar 

  43. Stegelmeier BL, Edgar JA, Colegate SM, Gardner DR, Schoch TK, Coulombe RA, Molyneux RJ (1999) Pyrrolizidine alkaloid plants, metabolism and toxicity. J Nat Toxins 8: 95–116

    CAS  PubMed  Google Scholar 

  44. Reimann A, Nurhayati N, Backenköhler A, Ober D (2004) Repeated evolution of the pyrrolizidine alkaloid-mediated defense system in separate angiosperm lineages. Plant Cell 16: 2772–2784

    CAS  PubMed  Google Scholar 

  45. Ober D, Harms R, Witte L, Hartmann T (2003) Molecular evolution by change of function — Alkaloid-specific homospermidine synthase retained all properties of deoxyhypusine synthase except binding the EIF5A precursor protein. J Biol Chem 278: 12805–12812

    CAS  PubMed  Google Scholar 

  46. Ober D (2005) Seeing double: Gene duplication and diversification in plant secondary metabolism. Trends Plant Sci 10: 444–449

    CAS  PubMed  Google Scholar 

  47. Stafford HA (1994) Anthocyanins and betalains — Evolution of the mutually exclusive pathways. Plant Science 101: 91–98

    CAS  Google Scholar 

  48. Clement JS, Mabry TJ, Wyler H, Drieding AS (1993) Chemical review and evolutionary significance of the betalains. In: TJ Mabry, HD Behnke (eds): Caryophyllales: Evolution and Systematics, Springer-Verlag, Berlin, 247–261

    Google Scholar 

  49. Garfield S (2001) Mauve: How One Man Invented a Color that Changed the World. W.W. Norton & Company, New York, NY

    Google Scholar 

  50. Cornforth JW (1994) The trouble with synthesis. Aldrichim Acta 27: 71–77

    CAS  Google Scholar 

  51. Nicolaou KC (2009) Inspirations, discoveries, and future perspectives in total synthesis. J Org Chem 74: 951–972

    CAS  PubMed  Google Scholar 

  52. Nicolaou KC (2005) Joys of molecules. 1. Campaigns in total synthesis. J Org Chem 70: 7007–7027

    CAS  PubMed  Google Scholar 

  53. Nicolaou KC (2005) Joys of molecules. 2. Endeavors, in chemical biology and medicinal chemistry. J Med Chem 48: 5613–5638

    CAS  PubMed  Google Scholar 

  54. Nicolaou KC, Snyder SA (2005) Chasing molecules that were never there: Misassigned natural products and the role of chemical synthesis in modern structure elucidation. Angew Chem Int Ed 44: 1012–1044

    CAS  Google Scholar 

  55. Woodward RB, Doering WE (1944) The total synthesis of quinine. J Am Chem Soc 66: 849

    Google Scholar 

  56. Stork G, Niu D, Fujimoto A, Koft ER, Balkovec JM, Tata JR, Dake GR (2001) The first stereo-selective total synthesis of quinine. J Am Chem Soc 123: 3239–3242

    CAS  PubMed  Google Scholar 

  57. Seeman JI (2007) The Woodward-Doering/Rabe-Kindler total synthesis of quinine: Setting the record straight. Angew Chem Int Ed 46: 1378–1413

    CAS  Google Scholar 

  58. Kaufman TS, Rúveda EA (2005) The quest for quinine: Those who won the battles and those who won the war. Angew Chem Int, Ed 44: 854–885

    CAS  Google Scholar 

  59. Julian PL, Pikl J (1935) Studies in the indole series. IV. The synthesis of d, l-eserethole. J Am Chem Soc 57: 563–566

    CAS  Google Scholar 

  60. Ault A (2008) Percy Julian, Robert Robinson, and the identify of eserethole. J Chem Educ 85: 1524–1530

    CAS  Google Scholar 

  61. Dobson CM (2004) Chemical space and biology. Nature 432: 824–828

    CAS  PubMed  Google Scholar 

  62. Lipkus AH, Yuan Q, Lucas KA, Funk SA, Bartelt WF, Schenck RJ, Trippe AJ (2008) Structural diversity of organic chemistry. A scaffold analysis of the CAS Registry. J Org Chem 73: 4443–4451

    CAS  PubMed  Google Scholar 

  63. Bohacek RS, McMartin C, Guida WC (1996) The art and practice of structure-based drug design: A molecular modeling perspective. Med Res Rev 16: 3–50

    CAS  PubMed  Google Scholar 

  64. Feher M, Schmidt JM (2003) Property distributions: Differences between drugs, natural products, and molecules from combinatorial chemistry. J Chem Inform Comp Sci 43: 218–227

    CAS  Google Scholar 

  65. Koch MA, Schuffenhauer A, Scheck M, Wetzel S, Casaulta M, Odermatt A, Ertl P, Waldmann H (2005) Charting biologically relevant chemical space: A structural classification of natural products (Sconp). Proc Natl Acad Sci USA 102: 17272–17277

    CAS  PubMed  Google Scholar 

  66. Wetzel S, Schuffenhauer A, Roggo S, Ertl P, Waldmann H (2007) cheminformatic analysis of natural products and their chemical space. Chimia 61: 355–360

    CAS  Google Scholar 

  67. Larsson J, Gottfries J, Muresan S, Backlund A (2007) chemGPS-NP: Tuned for navigation in biologically relevant chemical space. J Nat Prod 70: 789–794

    CAS  PubMed  Google Scholar 

  68. Clardy J, Walsh C (2004) Lessons from natural molecules. Nature 432: 829–837

    CAS  PubMed  Google Scholar 

  69. Stockwell BR (2004) Exploring biology with small organic molecules. Nature 432: 846–854

    CAS  PubMed  Google Scholar 

  70. Lipinski C, Hopkins A (2004) Navigating chemical space for biology and medicine. Nature 432: 855–861

    CAS  PubMed  Google Scholar 

  71. Newman DJ (2008) Natural products as leads to potential drugs: An old process or the new hope for drug discovery?. J Med Chem 51: 2589–2599

    CAS  PubMed  Google Scholar 

  72. Kumar K, Waldmann H (2009) Synthesis of natural product inspired compound collections. Angew Chem Int Ed 48: 3224–3242

    CAS  Google Scholar 

  73. Marco-Contelles J, Carreiras MD, Rodríguez C, Villarroya M, García AG (2006) Synthesis and pharmacology of galantamine. Chem Rev 106: 116–133

    CAS  PubMed  Google Scholar 

  74. Heinrich M, Teoh HL (2004) Galanthamine from snowdrop — The development of a modern drug against Alzheimer’s disease from local Caucasian knowledge. J Ethnopharmacol 92: 147–162

    CAS  PubMed  Google Scholar 

  75. Pelish HE, Westwood NJ, Feng Y, Kirchhausen T, Shair MD (2001) Use of biomimetic diversity-oriented synthesis to discover galanthamine-like molecules with biological properties beyond those of the natural product. J Am Chem Soc 123: 6740–6741

    CAS  PubMed  Google Scholar 

  76. Breinbauer R, Manger M, Scheck M, Waldmann H (2002) Natural product guided compound library development. Curr Med Chem 9: 2129–2145

    CAS  PubMed  Google Scholar 

  77. Abreu PM, Branco PS (2003) Natural product-like combinatorial libraries. J Braz Chem Soc 14: 675–712

    CAS  Google Scholar 

  78. Kren V, Martínková L (2001) Glycosides in medicine: The role of glycosidic residue in biological activity. Curr Med Chem 8: 1303–1328

    CAS  PubMed  Google Scholar 

  79. Withering W (1785) An account of the foxglove and some of its medical uses; with practical remarks on the dropsy, and some other diseases. Swinney, Birmingham, UK

    Google Scholar 

  80. Langenhan JM, Peters NR, Guzei IA, Hoffmann M, Thorson JS (2005) Enhancing the anticancer properties of cardiac glycosides by neoglycorandomization. Proc Natl Acad Sci USA 102: 12305–12310

    CAS  PubMed  Google Scholar 

  81. Ahmed A, Peters NR, Fitzgerald MK, Watson JA, Hoffmann FM, Thorson JS (2006) Colchicine glycorandomization influences cytotoxicity and mechanism of action. J Am Chem Soc 128: 14224–14225

    CAS  PubMed  Google Scholar 

  82. Langenhan JM, Griffith BR, Thorson JS (2005) Neoglycorandomization and chemoenzy matic glycorandomization: Two complementary tools for natural product diversification. J Nat Prod 68: 1696–1711

    CAS  PubMed  Google Scholar 

  83. Thorson JS, Hosted TJ, Jiang J, Biggins JB, Ahlert J (2001) Nature’s carbohydrate chemists: The enzymatic glycosylation of bioactive bacterial metabolites. Curr Org Chem 5: 139–167

    CAS  Google Scholar 

  84. Williams GJ, Gantt RW, Thorson JS (2008) The impact of enzyme engineering upon natural product glycodiversification. Curr Opin Chem Biol 12: 556–564

    CAS  PubMed  Google Scholar 

  85. Williams GJ, Zhang C, Thorson JS (2007) Expanding the promiscuity of a natural-product glycosyltransferase by directed evolution. Nat Chem Biol 3: 657–662

    CAS  PubMed  Google Scholar 

  86. Oksman-Caldentey KM, Inzé D (2004) Plant cell factories in the post-genomic era: New ways to produce designer secondary metabolites. Trends Plant Sci 9: 433–440

    CAS  PubMed  Google Scholar 

  87. Oberlies NH, Kroll DJ (2004) Camptothecin and taxol: Historic achievements in natural products research J Nat Prod 67: 129–135

    CAS  PubMed  Google Scholar 

  88. Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4: 253–265

    CAS  PubMed  Google Scholar 

  89. Kingston DG, Newman DJ (2007) Taxoids: Cancer-fighting compounds from nature. Curr Opin Drug Discov Devel 10: 130–144

    CAS  PubMed  Google Scholar 

  90. Frense D (2007) Taxanes: Perspectives for biotechnological production. Appl Microbiol Biotechnol 73: 1233–1240

    CAS  PubMed  Google Scholar 

  91. Expósito O, Bonfill M, Moyano E, Onrubia M, Mirjalili MH Cusidó RM, Palazón J (2009) Biotechnological production of taxol and related taxoids: Current state and prospects. Anticancer Agents Med Chem 9: 109–121

    PubMed  Google Scholar 

  92. Covello PS (2008) Making artemisinin. Phytochemistry 69: 2881–2885

    CAS  PubMed  Google Scholar 

  93. Chemler JA, Koffas MAG (2008) Metabolic engineering for plant natural product biosynthesis in microbes. Curr Opin Biotechol 19: 597–605

    CAS  Google Scholar 

  94. Julsing MK, Koulman A, Woerdenbag HJ, Quax WJ, Kayser O (2006) Combinatorial biosynthesis of medicinal plant secondary metabolites. Biomol Eng 23: 265–279

    CAS  PubMed  Google Scholar 

  95. Minami H, Kim JS, Ikezawa N, Takemura T, Katayama T, Kumagai H, Sato F (2008) Microbial production of plant benzylisoquinoline alkaloids. Proc Natl Acad Sci USA 105: 7393–7398

    CAS  PubMed  Google Scholar 

  96. Hawkins KM, Smolke CD (2008) Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Nat Chem Biol 4: 564–573

    CAS  PubMed  Google Scholar 

  97. Van der Heijden R, Jacobs DI, Snoeijer W, Hallard D, Verpoorte R (2004) The Catharanthus Alkaloids: Pharmacognosy and biotechnology. Curr Med Chem 11: 607–628

    Google Scholar 

  98. McCoy E, O’Connor SE (2006) Directed biosynthesis of alkaloid analogs in the medicinal plant Catharanthus roseus. J Am Chem Soc 128: 14276–14277

    CAS  PubMed  Google Scholar 

  99. Bernhardt P, McCoy E, O’Connor SE (2007) Rapid identification of enzyme variants for reengineered alkaloid biosynthesis in periwinkle. Chem Biol 14: 888–897

    CAS  PubMed  Google Scholar 

  100. Staunton J, Weissman KJ (2001) Polyketide biosynthesis: A millennium review. Nat Prod Rep 18: 380–416

    CAS  PubMed  Google Scholar 

  101. Flores-Sanchez IJ, Verpoorte R (2009) Plant polyketide synthases: A fascinating group of enzymes. Plant Physiol Biochem 47: 167–174

    CAS  PubMed  Google Scholar 

  102. Shi S, Morita H, Wanibuchi K, Mizuuchi Y, Noguchi H, Abe I (2008) Enzymatic synthesis of plant polyketides. Curr Org Synth 5: 250–266

    CAS  Google Scholar 

  103. Crick F (1970) Central dogma of molecular biology. Nature 227: 561–563

    CAS  PubMed  Google Scholar 

  104. Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng JK, Bumgarner R, Goodlett DR, Aebersold R, Hood L (2001) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292: 929–934

    CAS  PubMed  Google Scholar 

  105. Moxley JF, Jewett MC, Antoniewicz MR, Villas-Boas SG, Alper H, Wheeler RT, Tong L, Hinnebusch AG, Ideker T, Nielsen J, Stephanopoulos G (2009) Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p. Proc Natl Acad Sci USA 106: 6477–6482

    CAS  PubMed  Google Scholar 

  106. Nicholson JK, Connelly J, Lindon JC, Holmes E (2002) Metabonomics: A platform for studying drug toxicity and gene function. Nat Rev Drug Discov 1: 153–161

    CAS  PubMed  Google Scholar 

  107. Robertson DG, Reily MD, Baker JD (2007) Metabonomics in pharmaceutical discovery and development. J Proteome Res 6: 526–539

    CAS  PubMed  Google Scholar 

  108. Ellis DI, Dunn WB, Griffin JL, Allwood JW, Goodacre R (2007) Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics 8: 1243–1266

    CAS  PubMed  Google Scholar 

  109. Craig A, Sidaway J, Holmes E, Orton T, Jackson D, Rowlinson R, Nickson J, Tonge R, Wilson I, Nicholson J (2006) Systems toxicology: Integrated genomic, proteomic and metabonomic analysis of methapyrilene induced hepatotoxicity in the rat. J Proteome Res 5: 1586–1601

    CAS  PubMed  Google Scholar 

  110. Waters MD, Fostel JM (2004) Toxicogenomics and systems toxicology: Aims and prospects. Nat Rev Genet 5: 936–948

    CAS  PubMed  Google Scholar 

  111. Waters MD, Olden K, Tennant RW (2003) Toxicogenomic approach for assessing toxicant-related disease. Mutat Res 544: 415–424

    CAS  PubMed  Google Scholar 

  112. Xirasagar S, Gustafson SF, Huang CC, Pan Q, Fostel J, Boyer P, Merrick BA, Tomer KB, Chan DD, Yost KJ 3rd, Choi D, Xiao N, Stasiewicz S, Bushel P, Waters MD (2006) Chemical effects in biological systems (CEBS) object model for toxicology data, SysTox-OM: Design and application. Bioinformatics 22: 874–882

    CAS  PubMed  Google Scholar 

  113. Patwardhan B, Warude D, Pushpangadan P, Bhatt N (2005) Ayurveda and traditional Chinese medicine: A comparative overview. Evid Based Complement Alternat Med 2: 465–473

    PubMed  Google Scholar 

  114. Corson TW, Crews CM (2007) Molecular understanding and modern application of traditional medicines: Triumphs and trials. Cell 130: 769–774

    CAS  PubMed  Google Scholar 

  115. Wagner H, Ulrich-Merzenich G (2009) Synergy research: Approaching a new generation of phytopharmaceuticals. Phytomedicine 16: 97–110

    CAS  PubMed  Google Scholar 

  116. Williamson EM (2001) Synergy and other interactions in phytomedicine. Phytomedicine 8: 401–409

    CAS  PubMed  Google Scholar 

  117. Ulrich-Merzenich G, Panek D, Zeitler H, Wagner H, Vetter H (2009) New perspectives for synergy research with the “omic”-technologies. Phytomedicine 16: 495–508

    CAS  PubMed  Google Scholar 

  118. Verpoorte R, Choi YH, Kim HK (2005) Ethnopharmacology and systems biology: A perfect holistic match. J Ethnopharmacol 100: 53–56

    CAS  PubMed  Google Scholar 

  119. Schmidt BM, Ribnicky DM, Lipsky PE, Raskin I (2007) Revisiting the ancient concept of botanical therapeutics. Nat Chem Biol 3: 360–366

    CAS  PubMed  Google Scholar 

  120. Borisy AA, Elliott PJ, Hurst NW, Lee MS, Lehár J, Price ER, Serbedzija G, Zimmermann GR, Foley MA, Stockwell BR, Keith CT (2003) Systematic discovery of multicomponent therapeutics. Proc Natl Acad Sci USA 100: 7977–7982

    CAS  PubMed  Google Scholar 

  121. Shyur LF, Yang NS (2008) Metabolomics for phytomedicine research and drug development. Curr Opin Chem Biol 12: 66–71

    CAS  PubMed  Google Scholar 

  122. Heinrich M (2008) Ethnopharmacy and natural product research — Multidisciplinary opportunities for research in the metabolomic age. Phytochem Lett 1: 1–5

    Google Scholar 

  123. Urich-Merzenich G, Zeitler H, Jobst D, Panek D, Vetter H, Wagner H (2007) Application of the “-omic-” technologies in phytomedicine. Phytomedicine 14: 70–82

    Google Scholar 

  124. Wang M, Lamers R, Korthout H, van Nesselrooij JHJ, Witkamp RF, van der Heijden R, Voshol PJ, Havekes LM, Verpoorte R, van der Greef J (2005) Metabolomics in the context of systems biology: Bridging traditional Chinese medicine and molecular pharmacology. Phytother Res 19: 173–182

    CAS  PubMed  Google Scholar 

  125. Kang YJ (2008) Herbogenomics: From traditional Chinese medicine to novel therapeutics. Exp Biol Med 233: 1059–1065

    CAS  Google Scholar 

  126. Watanabe CMH, Wolffram S, Ader P, Rimbach G, Packer L, Maguire JJ, Schultz PG, Gohil K (2001) The in vivo neuromodulatory effects of the herbal medicine Ginkgo biloba. Proc Natl Acad Sci USA 98: 6577–6580

    CAS  PubMed  Google Scholar 

  127. May BH, Yang AWH, Zhang AL, Owens MD, Bennett L, Head R, Cobiac L, Li CG, Hugel H, Story DF, Xue CCL (2009) Chinese herbal medicine for mild cognitive impairment and age associated memory impairment: A review of randomised controlled trials. Biogerontology 10: 109–123

    PubMed  Google Scholar 

  128. Christen Y, Maixent JM (2002) What is Ginkgo biloba extract EGb 761? An overview — From molecular biology to clinical medicine. Cell Mol Biol 48: 601–611

    CAS  PubMed  Google Scholar 

  129. Mahadevan S, Park Y (2008) Multifaceted therapeutic benefits of Ginkgo biloba L.: Chemistry, efficacy, safety, and uses. J Food Sci 73: R14–R19

    CAS  PubMed  Google Scholar 

  130. Smith JV, Luo Y (2004) Studies on molecular mechanisms of Ginkgo biloba extract. Appl Microbiol Biotechnol 64: 465–472

    CAS  PubMed  Google Scholar 

  131. Wang Z, Du QY, Wang FS, Liu ZR, Li BG, Wang AM, Wang YY (2004) Microarray analysis of gene expression on herbal glycoside recipes improving deficient ability of spatial learning memory in ischemic mice. J Neurochem 88: 1406–1415

    CAS  PubMed  Google Scholar 

  132. Ise R, Han DH, Takahashi Y, Terasaka S, Inoue A, Tanji M, Kiyama R (2005) Expression profiling of the estrogen responsive genes in response to phytoestrogens using a customized DNA microarray. FEBS Lett 579: 1732–1740

    CAS  PubMed  Google Scholar 

  133. Dong SJ, Inoue A, Zhu Y, Tanji M, Kiyama R (2007) Activation of rapid signaling pathways and the subsequent transcriptional regulation for the proliferation of breast cancer MCF-7 cells by the treatment with an extract of Glycyrrhiza glabra root. Food Chem Toxicol 45: 2470–2478

    CAS  PubMed  Google Scholar 

  134. Adachi T, Ono Y, Koh KB, Takashima K, Tainaka H, Matsuno Y, Nakagawa S, Todaka E, Sakurai K, Fukata H, Iguchi T, Komiyama M, Mori C (2004) Long-term alteration of gene expression without morphological change in testis after neonatal exposure to genistein in mice: Toxicogenomic analysis using cDNA microarray. Food Chem Toxicol 42: 445–452

    CAS  PubMed  Google Scholar 

  135. Naciff JM, Hess KA, Overmann GJ, Torontali SM, Carr GJ, Tiesman JP, Foertsch LM, Richardson BD, Martinez JE, Daston GP (2005) Gene expression changes induced in the testis by transplacental exposure to high and low doses of 17α-ethynyl estradiol, genistein, or bisphenol A. Toxicol Sci 86: 396–416

    CAS  PubMed  Google Scholar 

  136. Chen CS, Chen NJ, Lin LW, Hsieh CC, Chen GW, Hsieh MT (2006) Effects of Scutellariae Radix on gene expression in HEK 293 cells using cDNA microarray. J Ethnopharmacol 105: 346–351

    PubMed  Google Scholar 

  137. Hsieh MT, Hsieh CL, Lin LW, Wu CR, Huang GS (2003) Differential gene expression of scopolamine-treated rat hippocampus-application of cDNA microarray technology. Life Sci 73: 1007–1016

    CAS  PubMed  Google Scholar 

  138. Cho WCS (2007) Application of proteomics in Chinese medicine research. Am J Chinese Med 35: 911–922

    CAS  Google Scholar 

  139. Ong ES, Len SM, Lee AC, Chui P, Chooi KF (2004) Proteomic analysis of mouse liver for the evaluation of effects of Scutellariae radix by liquid chromatography with tandem mass spectrometry. Rapid Commun Mass Spectrom 18: 2522–2530

    CAS  PubMed  Google Scholar 

  140. Goh D, Lee YH, Ong ES (2005) Inhibitory effects of a chemically standardized extract from Scutellaria barbata in human colon cancer cell lines, LoVo. J Agric Food Chem 53: 8197–8204

    CAS  PubMed  Google Scholar 

  141. Lu GD, Shen HM, Ong CN, Chung MC (2007) Anticancer effects of aloe-emodin on HepG2 cells: Cellular and proteomic studies. Proteomics Clin Appl 1: 410–419

    CAS  Google Scholar 

  142. Wang Y, Liu L, Hu CC, Cheng YY (2007) Effects of Salviae Mitiorrhizae and Cortex Moutan extract on the rat heart after myocardial infarction: A proteomic study. Biochem Pharmacol 74: 415–424

    CAS  PubMed  Google Scholar 

  143. Pakalapati G, Li L, Gretz N, Koch E, Wink M (2009) Influence of red clover (Trifolium pratense) isoflavones on gene and protein expression profiles in liver of ovariectomized rats. Phytomedicine 16: 845–855

    CAS  PubMed  Google Scholar 

  144. Lee SY, Kim GT, Roh SH, Song JS, Kim HJ, Hong SS, Kwon SW, Park JH (2009) Proteome changes related to the anti-cancer activity of HT29 cells by the treatment of ginsenoside Rd. Pharmazie 64: 242–247

    CAS  PubMed  Google Scholar 

  145. Jacobs DI, Gaspari M, van der Greef J, van der Heijden R, Verpoorte R (2005) Proteome analysis of the medicinal plant Catharanthus roseus. Planta 221: 690–704

    CAS  PubMed  Google Scholar 

  146. Chen MJ, Su MM, Zhao LP, Jiang J, Liu P, Cheng JY, Lai YJ, Liu YM, Jia W (2006) Metabonomic study of aristolochic acid-induced nephrotoxicity in rats. J Proteome Res 5: 995–1002

    CAS  PubMed  Google Scholar 

  147. Chen MJ, Ni Y, Duan HQ, Qiu YP, Guo CY, Jiao Y, Shi HJ, Su MM, Jia W (2008) Mass spectrometry-based metabolic profiling of rat urine associated with general toxicity induced by the multiglycoside of Tripterygium wilfordii Hook. Chem Res Toxicol 21: 288–294

    CAS  PubMed  Google Scholar 

  148. Wang YL, Tang HR, Nicholson JK, Hylands PJ, Sampson J, Holmes E (2005) A metabonomic strategy for the detection of the metabolic effects of chamomile (Matricaria recutita L.) ingestion. J Agric Food Chem 53: 191–196

    CAS  PubMed  Google Scholar 

  149. Solanky KS, Bailey NJ, Beckwith-Hall BM, Bingham S, Davis A, Holmes E, Nicholson JK, Cassidy A (2005) Biofluid 1H NMR-based metabonomic techniques in nutrition research — Metabolic effects of dietary isoflavones in humans. J Nutr Biochem 16: 236–244

    CAS  PubMed  Google Scholar 

  150. Solanky KS, Bailey NJ, Beckwith-Hall BM, Davis A, Bingham S, Holmes E, Nicholson JK, Cassidy A (2003) Application of biofluid 1H nuclear magnetic resonance-based metabonomic techniques for the analysis of the biochemical effects of dietary isoflavones on human plasma profile. Anal Biochem 323: 197–204

    CAS  PubMed  Google Scholar 

  151. Law WS, Huang PY, Ong ES, Ong CN, Li SFY, Pasikanti KK, Chan ECY (2008) Metabonomics investigation of human urine after ingestion of green tea with gas chromatography/mass spectrometry, liquid chromatography/mass spectrometry and 1H NMR spectroscopy. Rapid Commun Mass Spectrom 22: 2436–2446

    CAS  PubMed  Google Scholar 

  152. Gulland JM, Robinson R (1925) The constitution of codeine and thebaine. Mem Proc Manch Lit Philos Soc 69: 79–86

    CAS  Google Scholar 

  153. Gates M, Tschudi G (1952) The synthesis of morphine. J Am Chem Soc 78: 1380–1393

    Google Scholar 

  154. Pelletier PJ, Caventou JB (1818) Note sur un novel Alcali. Annales de Chemie et de Physique 104–105: 323–324

    Google Scholar 

  155. Openshaw HT, Robinson R (1946) Constitution of strychnine and the biogenetic relationship of strychnine and quinine. Nature 157: 438

    CAS  Google Scholar 

  156. Woodward RB, Cava MP, Ollis WD, Hunger A, Daeniker HU, Schenker K (1954) The total synthesis of strychnine. J Am Chem Soc 76: 4749–4751

    CAS  Google Scholar 

  157. Pelletier PJ, Caventou JB (1820) Rescherches chimiques sur les Quinquinas. Ber Dtsch Chem Ges 51: 466–467

    Google Scholar 

  158. Woodward RB, Doering, WE (1944) The total synthesis of quinine. J Am Chem Soc 66: 849

    Google Scholar 

  159. Pelletier PJ, Caventou JB (1820) Examen chimique de plusieurs végétaux de la famille des colchicées, et du principe actif qu’ils renferment (Cévadille (Veratrum sabadilla); hellébore blanc (Veratrum album); colchique commun (Colchicum autumnale)]. Annales de Chemie et de Physique 14: 69–83

    Google Scholar 

  160. King MV, De Vries JL, Pepinsky R (1952) An x-ray diffraction determination of the chemical structure of colchicine. Acta Crystallogr B 5: 437

    CAS  Google Scholar 

  161. Schreiber J, Leimgruber W, Pesaro M, Schudel P, Threlfall T, Eschenmoser A (1961) Synthese des colchicins. (Synthesis of colchicines.) Helv Chim Acta 65: 540–597

    Google Scholar 

  162. Giseke AL (1826) Ueber das wirksame Princip des Schierlings Conium maculatum. Arch Apotheker-Vereins Nördl Teutschl 20: 97–111

    Google Scholar 

  163. Hoffmann AW (1881) Einwirkung der Wärme auf die Ammoniumbasen. Ber Dtsch Chem Ges 14: 705–713

    Google Scholar 

  164. Ladenburg A (1889) Nachtrag zu der Mittheilung über die Synthese der activen Coniine. Ber Dtsch Chem Ges 22: 1403–1404

    Google Scholar 

  165. Posselt W, Reimann L (1828) Chemische Unterschungen des Tabaks und Darstellung des eigenthümlichen wirksamen Princips dieser Pflanze. Geigers Magazin der Pharmacie 24: 138–161

    Google Scholar 

  166. Pinner A (1893) Ueber Nicotin. Die Konstitution des Alkaloids. Ber Dtsch Chem Ges 26: 292–305

    Google Scholar 

  167. Pictet A, Rotschy A (1904) Synthese des Nicotins. Ber Dtsch Chem Ges 37: 1225–1235

    CAS  Google Scholar 

  168. Leroux H (1830) Analyse de l’écorce de saule et découverte de la salicine. Journal de Chemie Médicale, de Pharmacie et de Toxicologie 6: 340–342

    Google Scholar 

  169. Piria MR (1838) Sur la composition de la Salicine et sur quelques-unes de ses réactions. Comptes Rendes 6: 338

    Google Scholar 

  170. Kolbe H (1860) Ueber die Synthese der Salicylsäure. (Regarding the synthesis of salicylic acid.) Liebigs Ann 113: 125–127

    Google Scholar 

  171. Michael A (1879) On the synthesis of helicin and phenolglucoside. Am Chem J 1: 305–312

    Google Scholar 

  172. Geiger PL, Hesse H (1833) Darstellung des Atropins. Liebigs Ann 5: 43–81

    Google Scholar 

  173. Ladenburg A (1883) Die Constitution des Atropins. Liebigs Ann 217: 74–149

    Google Scholar 

  174. Willstätter R (1901) Conversion of tropidine into tropine. Ber Dtsch Chem Ges 34: 3163–3165

    Google Scholar 

  175. Niemann A (1860) Ueber eine neue organische Base in den Cocablättern. Arch Pharm 153: 129–155

    Google Scholar 

  176. Willstätter R, Müller W (1898) Ueber die Constitution des Ecgonius. Ber Dtsch Chem Ges 31: 2655–2669

    Google Scholar 

  177. Jobst J, Hesse O (1864) Ueber die Bohne von Calabar. (Regarding the bean from calabar.) Liebigs Ann. 129S: 115–121

    Google Scholar 

  178. Podwyssotski V (1880) Pharmakologische Studien über Podophyllum peltatum. Arch Exp Pathol Pharmakol 13: 29–52

    Google Scholar 

  179. Hartwell JL, Schrecker AW (1951) Components of Podophyllin. V. The Contitution of Podophyllotoxin. J Am Chem Soc 73: 2909–2916

    CAS  Google Scholar 

  180. Gensler WJ, Gatsonis CD (1962) Synthesis of Podophyllotoxin. J Am Chem Soc 84: 1748–1749

    CAS  Google Scholar 

  181. Komppa G (1903) Die vollständige Synthese de Camphersäure und Dehydrocamphersäure. Ber Dtsch Chem Ges 36: 4332–4335

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Hanson, B.A. (2010). Toxic plants: a chemist’s perspective. In: Luch, A. (eds) Molecular, Clinical and Environmental Toxicology. Experientia Supplementum, vol 100. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8338-1_5

Download citation

Publish with us

Policies and ethics