Skip to main content

Non-commutative Geometry and the Spectral Model of Space-time

  • Chapter
Quantum Spaces

Part of the book series: Progress in Mathematical Physics ((PMP,volume 53))

Abstract

This is a report on our joint work with A. Chamseddine and M. Marcolli. This essay gives a short introduction to a potential application in physics of a new type of geometry based on spectral considerations which is convenient when dealing with non-commutative spaces, i.e., spaces in which the simplifying rule of commutativity is no longer applied to the coordinates. Starting from the phenomenological Lagrangian of gravity coupled with matter one infers, using the spectral action principle, that space-time admits a fine structure which is a subtle mixture of the usual 4-dimensional continuum with a finite discrete structure F. Under the (unrealistic) hypothesis that this structure remains valid (i.e., one does not have any “hyperfine” modification) until the unification scale, one obtains a number of predictions whose approximate validity is a basic test of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Barrett, A Lorentzian version of the non-commutative geometry of the standard. model of particle physics hep-th/0608221.

    Google Scholar 

  2. C. Bordé, Base units of the SI, fundamental constants and modern quantum physics, Phil. Trans. R. Soc. A 363 (2005), 2177–2201.

    Article  ADS  Google Scholar 

  3. A. Chamseddine, A. Connes, Universal Formula for Non-commutative Geometry. Actions: Unification of Gravity and the Standard Model, Phys. Rev. Lett. 77 (1996), 4868–4871.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. A. Chamseddine, A. Connes, The Spectral Action Principle, Comm.Math. Phys. 186 (1997), 731–750.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. A. Chamseddine, A. Connes, Scale Invariance in the Spectral Action, hep-th/0512169 to appear in Jour. Math. Phys.

    Google Scholar 

  6. A. Chamseddine, A. Connes, Inner fluctuations of the spectral action, hep-th/0605011.

    Google Scholar 

  7. A. Chamseddine, A. Connes, M. Marcolli, Gravity and the standard model with neutrino. mixing, hep-th/0610241.

    Google Scholar 

  8. S. Coleman, Aspects of symmetry, Selected Erice Lectures, Cambridge University Press, 1985.

    Google Scholar 

  9. A. Connes, Non-commutative geometry, Academic Press (1994).

    Google Scholar 

  10. A. Connes, Non-commutative geometry and reality, Journal of Math. Physics 36 no. 11 (1995).

    Google Scholar 

  11. A. Connes, Gravity coupled with matter and the foundation of non-commutative geometry, Comm. Math. Phys. (1995)

    Google Scholar 

  12. A. Connes, Non-commutative Geometry and the standard model with neutrino mixing, hep-th/0608226.

    Google Scholar 

  13. A. Connes, M. Marcolli Non-commutative Geometry, Quantum fields and Motives, Book in preparation.

    Google Scholar 

  14. A. Connes, H. Moscovici, The local index formula in non-commutative geometry, GAFA, Vol. 5 (1995), 174–243.

    Article  MATH  MathSciNet  Google Scholar 

  15. L. Dąbrowski, A. Sitarz, Dirac operator on the standard Podleśs quantum sphere, Non-commutative Geometry and Quantum Groups, Banach Centre Publications 61, Hajac, P.M. and Pusz, W. (eds.), Warszawa: IMPAN, 2003, pp. 49–58.

    Google Scholar 

  16. S. Giddings, D. Marolf, J. Hartle, Observables in effective gravity, hep-th/0512200.

    Google Scholar 

  17. J. Gracia-Bondia, B. Iochum, T. Schucker, The standard model in non-commutative. geometry and fermion doubling. Phys. Lett. B 416 no. 1–2 (1998), 123–128.

    ADS  MathSciNet  Google Scholar 

  18. D. Kastler, Non-commutative geometry and fundamental physical interactions: The. Lagrangian level, Journal. Math. Phys. 41 (2000), 3867–3891.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. M. Knecht, T. Schucker Spectral action and big desert hep-ph/065166

    Google Scholar 

  20. O. Lauscher, M. Reuter, Asymptotic Safety in Quantum Einstein Gravity: nonperturbative. renormalizability and fractal spacetime structure, hep-th/0511260.

    Google Scholar 

  21. F. Lizzi, G. Mangano, G. Miele, G. Sparano, Fermion Hilbert space and Fermion. Doubling in the Non-commutative Geometry Approach to Gauge Theories hepth/9610035.

    Google Scholar 

  22. J. Mather, Commutators of diffeomorphisms. II, Comment. Math. Helv. 50 (1975), 33–40.

    Article  MATH  MathSciNet  Google Scholar 

  23. R.N. Mohapatra, P.B. Pal, Massive neutrinos in physics and astrophysics, World Scientific, 2004.

    Google Scholar 

  24. M. Rieffel, Morita equivalence for C*-algebras and W*-algebras, J. Pure Appl. Algebra, 5 (1974), 51–96.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Sher, Electroweak Higgs potential and vacuum stability, Phys. Rep. Vol.179 (1989) N.5–6, 273–418.

    Article  ADS  Google Scholar 

  26. M. Veltman, Diagrammatica: the path to Feynman diagrams, Cambridge Univ. Press, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag Basel

About this chapter

Cite this chapter

Connes, A. (2007). Non-commutative Geometry and the Spectral Model of Space-time. In: Duplantier, B. (eds) Quantum Spaces. Progress in Mathematical Physics, vol 53. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8522-4_5

Download citation

Publish with us

Policies and ethics