Skip to main content

Instruments for Gravitational Wave Astronomy on Ground and in Space

  • Chapter
Gravitation and Experiment

Part of the book series: Progress in Mathematical Physics ((PMP,volume 52))

  • 566 Accesses

Abstract

Gravitatioanl Wave Astronomy progressively becomes this new window on the universe that we expected since tens of years. The technology has now reached a point where large instruments meet a level of sensitivity relevant for astrophysics. Depending on the sector of physics to be addressed, quired. Ground based antennas are already built in Europe, in Japan and in the USA and begin to deliver science data. The ESA/NASA space mission LISA in not yet definitively approved, but a number of teams endeavour to successfully pass the coming project reviews. We review the general principles of the optical detection of gravitation waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. http://www.ligo.caltech.edu

  2. http://www.HHHcascma. virgo. infn. it

  3. http://www.lisa.jpl.gov

  4. Kip S. Thorne, in 300 years of gravitation, Edited by S.W. Hawking and W. Israel, Cambridge U.P. 1987.

    Google Scholar 

  5. L. Blanchet, Phys. Rev. D 72 (2005), 044024.

    Article  ADS  MathSciNet  Google Scholar 

  6. Joseph Weber, in Gravitation and Relativity, Edited by Chiu and Hoffmann, Benjamin 1964.

    Google Scholar 

  7. J.-Y. Vinet, Ann. Inst. Henri Poincaré, Vol. XXX n3 (1979) p. 251.

    ADS  Google Scholar 

  8. L. Baggio et al., Phys. Lett. 95 (2005), p. 081103.

    Article  Google Scholar 

  9. P. Astone et al., Class. Quant. Grav. 23 (2006), S57–S62.

    Article  ADS  Google Scholar 

  10. A. de Waard et al., Proceedings of the 6th Amaldi Conference on Gravitational Wave, Okinawa, Japan (2005), (to be published in Jour. of Phys.: Conference series).

    Google Scholar 

  11. S.V. Dhurandhar, R.K. Nayak and J-Y. Vinet, Phys. Rev. D 65 (2002), 102002.

    Article  ADS  Google Scholar 

  12. Ronald Drever, in Gravitational Radiation, edited by N. Deruelle and T. Piran (North Holland 1983) p. 321.

    Google Scholar 

  13. T. Uchiyama et al., Class. Quantum Grav. 21 (2004), S1161–S1172.

    Article  ADS  Google Scholar 

  14. Yu. Levin, Phys. Rev. D 57 (1998), p. 659.

    Article  ADS  Google Scholar 

  15. F. Bondu, P. Hello and J.-Y. Vinet, Phys. Lett. A 246 (1998), p. 227–236.

    Article  ADS  Google Scholar 

  16. E. D’Ambrosio, Phys. Rev. D 67 (2003), 102004.

    Article  ADS  Google Scholar 

  17. J.-Y. Vinet, Class. Quantum Grav. 22 (2005), p. 1395.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. J. Agresti et al., LIGO technical documents, http://www.ligo.caltech.edu

  19. B. Mours, E. Tournefier, J.-Y. Vinet, Class. and Quantum Grav. 23 (2006), p. 5777–5784.

    Article  MATH  ADS  Google Scholar 

  20. http://www.lma.in2p3.fr

  21. P. Hello, N. Man, A. Brillet, J.-Y. Vinet, Journal de Physique I vol 2 (1992), p. 1287–1303.

    Article  ADS  Google Scholar 

  22. A. Buonanno, T. Damour, Phys. Rev. D 59 (1999), 084006.

    Article  ADS  MathSciNet  Google Scholar 

  23. http://www.geo600.uni-hannover.de

  24. http://www.tamago.mtk.nao.ac.jp

  25. S. Dhurandhar, R. Nayak, S. Koshti, J.-Y. Vinet, Class. Quantum Grav. 22, 3 (2005), p. 481–487.

    Article  MATH  ADS  Google Scholar 

  26. R. Nayak, S. Koshti, S. Dhurandhar, J.-Y. Vinet, Class. Quantum Grav. 26 (2006), p. 1763–1778.

    Article  ADS  MathSciNet  Google Scholar 

  27. P. Touboul, A. Bernard, C.R. Acad. Sei. Paris Sér. IV (2001) p. 1271.

    Google Scholar 

  28. M. Tinto, J. Armstrong, F. Eetabrook, The Astroph. Journal 527 (1999), p. 814–826.

    Article  ADS  Google Scholar 

  29. M. Tinto, F. B. Eetabrook, J. W. Armstrong, Phys. Rev D 69 (2004), 082001.

    Article  ADS  Google Scholar 

  30. R. Nayak, J.-Y. Vinet, Phys. Rev. D 70 (2004), p. 102003.

    Article  ADS  Google Scholar 

  31. G. Nelemans, L. Yungelson, S. Portegies Zwart, A&A 375 (2001), 890–898.

    Article  ADS  Google Scholar 

  32. R. Nayak, S. Dhurandhar, A. Pai, J.-Y. Vinet, Phys. Rev. D 68 (2003), 122001.

    Article  ADS  Google Scholar 

  33. M. Tinto, S. Larson, Class. Quantum Grav. 22 10 (2005), S531–S535.

    Article  ADS  Google Scholar 

  34. S. Hughes, Class. Quantum Grav. 18 (2001), p. 4067–4073.

    Article  MATH  ADS  Google Scholar 

  35. http://www.apc.univ-paris7.fr/SPIP/article.php3?id_article=164

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag Basel

About this chapter

Cite this chapter

Vinet, JY. (2007). Instruments for Gravitational Wave Astronomy on Ground and in Space. In: Gravitation and Experiment. Progress in Mathematical Physics, vol 52. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8524-8_5

Download citation

Publish with us

Policies and ethics