Skip to main content

Biodiversity of plant species and adaptation to drought and salt conditions. Selection of species for sustainable reforestation activity to combat desertification

  • Conference paper
Biosaline Agriculture and High Salinity Tolerance

Abstract

Soil salinity is a threat for many agriculture and forest communities. Particularly ecosystems surrounding desert and coastal areas need to be preserved and restored for their intrinsic ecological value and vulnerability. Knowledge on physiology and ecology of plant tolerance, resistance and adaptation to salt exposure is fundamental to face land degradation and related desertification processes. Studies of physiological adaptive traits are important to select suitable species for a sustainable management of rural and forest environments. Salinity affects productivity of plant species. Moreover the capacity to tolerate salinity is widely variable at intra-and inter-specific level. It is known that variations of photosynthetic performances and related parameters (e.g., leaf area) are mainly responsible of growth reduction under salt stress. Generally salinity limits CO2 availability at the carboxylation sites. A reduced assimilation rate is often accompanied by a more than proportional decrease in transpiration rate. Thus, salt-stress conditions usually determine an increase of instantaneous water-use efficiency (WUE).The investigation of salinity tolerance in natural environments is not easy because of climatic factors and field heterogeneity of salty soil. Moreover, because of the multiple and complex physiological responses to salinity, it is very important to find a suitable index to properly integrate the different physiological processes involved. Carbon isotope discrimination (Δ) in plant material has been demonstrated by several studies to be a promising approach that integrates physiological processes on different time scales under both drought and salt conditions. Δ is directly related to the ratio of intercellular to atmospheric partial pressure of CO2 (pi/pa) and negatively related with WUE. Moreover, it is a relatively low-cost, easy and non-invasive technique to investigate ecophysiological traits of plant species in controlled and field conditions. A brief overview and perspectives in applying A in ecophysiological studies, related to salinity and drought tolerance, are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allakhvererdies SI, Sakamoto A, Nishiyama Y, Inaba M, Murata N, (2000) Ionic and osmotic effects on NaCl-induced inactivation of photosystem I and II in Synechoccus sp. Plant Physiol 123: 1047–1056

    Article  Google Scholar 

  2. Borsani O, Valpuesta V, Botella MA (2003) Developing salt tolerant plants in a new century: A molecular biology approach. Plant Cell Tissue Organ Cult 73: 101–115

    Article  CAS  Google Scholar 

  3. Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166: 3–16

    Article  CAS  Google Scholar 

  4. Shaheen R, Hood-Nowotny RC (2005) Carbon isotope discrimination: Potential for screening salinity tolerance in rice at the seedling stage using hydroponics. Plant Breeding 124: 220–224

    Article  CAS  Google Scholar 

  5. Brugnoli E, Lauteri M (1991) Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt tolerant Gossipium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C3 non-halophytes. Plant Physiol 95: 628–635

    PubMed  CAS  Google Scholar 

  6. Gale J (1975) The combined effect of environmental factors and salinity on plant growth. In: A Poljakoff-Mayber, J Gale (eds): Plants and Saline Environments. Springer, Berlin, 186–192

    Google Scholar 

  7. Schwarz M, Gale J (1981) Maintenance respiration and carbon balance of plants at low levels of sodium chloride salinity. J Exp Bot 32: 933–941

    Article  CAS  Google Scholar 

  8. Ball MC (1981) Physiology of photosynthesis in two mangrove species: Responses to salinity and other environmental factors. PhD thesis, Australian National University, Canberra

    Google Scholar 

  9. DeJong TM (1978) Comparative gas exchange of four California beach taxa. Oecologia 51: 343–351

    Article  Google Scholar 

  10. Papp JC, Ball MC, Terry N (1983) A comparative study of the effects of NaCl salinity on respiration, photosynthesis, and leaf extension growth in Beta vulgaris L. (sugar beet). Plant Cell Environ 6: 675–671

    Google Scholar 

  11. Wang Y, Nil N (2000) Changes in chlorophyll, ribulose biphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. J Hort Sci Biotechnol 75: 623–627

    CAS  Google Scholar 

  12. Parida AK, Das AB (2005) Salt tolerance and salinità effects on plants: A review. Ecotoxicol Environ Safety 60: 324–349

    Article  PubMed  CAS  Google Scholar 

  13. Flowers TJ, Troke PF, Yeo AR (1977) The mechanisms of salt tolerance in halophytes. Annu Rev Plant Physiol 28: 89–121

    Article  CAS  Google Scholar 

  14. Greenway H, Munns R (1980) Mechanisms of salt tolerance in non-halophytes. Annu Rev Plant Physiol 31: 149–190

    Article  CAS  Google Scholar 

  15. Munns R, Termaat A (1986) Whole plant responses to salinity. Aust J Plant Physiol 13: 143–160

    Google Scholar 

  16. Levitt J (1980) Responses of plants to environmental stress. In: Water, Radiation, Salt and Other Stresses, vol. II. Academic Press, New York

    Google Scholar 

  17. Bethke PC, Drew MC (1992) Stomatal and non stomatal components to inhibition of photosynthesis in leaves of Capsicum annum during progressive exposure to NaCl salinity. Plant Physiol 99: 219–226

    PubMed  CAS  Google Scholar 

  18. Kao WY, Tsai TT, Shih CN (2003) Photosynthetic gas exchange and chlorophyll a fluorescence of three wild soybean species in response to NaCl treatments. Photosynthetica 41: 415–419

    Article  CAS  Google Scholar 

  19. Downton WJS, Grant WJR, Robinson SP (1985) Photosynthetic and stomatal responses of spinach leaves to salt stress. Plant Physiol 77: 85–88

    Google Scholar 

  20. Ball MC, Farquhar GD (1984) Photosynthetic and stomatal response of two mangrove species, Aegiceras corniculatum and Avicennia marina to long term salinity and humidity conditions. Plant Physiol 74:1–6

    PubMed  Google Scholar 

  21. Ball MC, Farquhar GD (1984) Photosynthetic and stomatal response of the grey mangrove Avicennia marina to transient salinity conditions. Plant Physiol 74: 7–11

    PubMed  Google Scholar 

  22. Seemann JR, Critchley C (1985) Effects of salt stress on the growth, ion content, stomatal behaviour and photosynthetic capacity of salt sensitive species, Phaseolus vulgaris L. Planta 164: 151–162

    Article  CAS  Google Scholar 

  23. Reddy PS, Ramanjulu S, Sudhakar C, Veeranjaneyulu K (1998) Differential sensitivity of stomatal and non-stomatal components to NaCl or Na2SO4 salinity in horsegram, Macrotyloma uniflorum (Lam.). Photosynthetica 35: 99–105

    Article  CAS  Google Scholar 

  24. Isla R, Aragues R, Royo A (1998) Validity of various physiological traits as screening criteria for salt tolerance in barley. Field Crop Res 58: 97–107

    Article  Google Scholar 

  25. Jiang Q, Roche D, Monaco TA, Durham S (2006) Gas exchange, chlorophyll fluorescence parameters and carbon isotope discrimination of 14 barley genetic lines in response to salinity. Field Crops Res 96: 269–278

    Article  Google Scholar 

  26. Meloni DA, Oliva MA, Ruiz HA, Martinez CA (2001) Contribution of proline and inorganic solutes to osmotic adjustment in cotton under stress. J Plant Nutr 24: 599–612

    Article  CAS  Google Scholar 

  27. Khan MA (2001) Experimental assessment of salinity tolerance of Ceriops tagal seedlings and saplings from the Indus delta. Pak Aquat Bot 70: 259–268

    Google Scholar 

  28. Romeroranda R, Soria T, Cuartero J, (2001) Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant Sci 160: 265–272

    Article  Google Scholar 

  29. Seemann JR, Sharkey TD (1986) Salinity and nitrogen effects on photosynthesis, ribulose-1, 5-bisphosphate carboxylase and metabolite pool size in Phaseolus vulgaris L. Plant Physiol 82: 555–560

    Article  PubMed  CAS  Google Scholar 

  30. Murata N, Mohanty PS, Hayashi H, Papageorgiou G (1992) Glycinebetaine stabilizes the association of extrinsic proteins with the photosynthetic oxygen-evolving complex. FEBS Lett 296: 187–189

    Article  PubMed  CAS  Google Scholar 

  31. Murota K, Ohshita Y, Watanabe A, Aso S, Sato F, Yamada Y (1994) Changes related to salt tolerance in thylakoid membranes of photoautotropically cultured green tobacco cells. Plant Cell Physiol 35: 107–113

    CAS  Google Scholar 

  32. Brugnoli E, Björkman O (1992) Growth of cotton under continuous salinity stress: Influence on allocation pattern, stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy. Planta 187: 335–347

    Article  CAS  Google Scholar 

  33. Terashima I, Wong SC, Osmond CB, Farquhar GD (1988) Characterisation of non-uniform photosynthesis induced by abscisic acid in leaves having different mesophyll anatomies. Plant Cell Physiol 29: 385–395

    CAS  Google Scholar 

  34. Farquhar GD, Hubich KT, Condon AG, Richards RA (1988) Carbon isotope fractionation and plant water-use efficiency. In: PW Rundel, JR Ehleringer, K Nagy (eds): Applications of stable isotope ratio to ecological research. Springer, New York, 21–40

    Google Scholar 

  35. Brugnoli E, Scartazza A, Lauteri M, Monteverdi MC, Maguas C (1998) Carbon isotope discrimination in structural and non-structural carbohydrates in relation to productivity and adaptation to unfavourable conditions. In: H Griffitths (ed): Stable isotopes: Integration of biological, ecological and geochemical processes. Bios Scientific Publishers, Oxford, 133–146

    Google Scholar 

  36. Brugnoli E, Farquhar GD (2000) Photosynthetic fractionation of carbon isotopes. In: RC Leegood, TD Sharkey, S von Caemmerer (eds): Photosynthesis: Physiology and Metabolism-Advances in Photosynthesis, vol. 9. Kluwer Academic Publisher, Dordrecht, 399–434

    Google Scholar 

  37. Ehleringer JR (1993) Carbon and water relations in desert plants: An isotopic perspective. In: JR Ehleringer, AE Hall, GD Farquhar (eds): Stable isotope and plant carbon-water relations. Academic Press, San Diego, 155–172

    Google Scholar 

  38. Brugnoli E, Hubick KT, Von Caemmerer S, Wong SC, Farquhar GD (1988) Correlation between the carbon isotope discrimination in leaf starch and sugars of C3 plants and the ratio of intercellular and atmospheric partial pressure of carbon dioxide. Plant Physiol 88: 1418–1424

    Article  PubMed  CAS  Google Scholar 

  39. Lauteri M, Brugnoli E, Spaccino L (1993) Carbon isotope discrimination in leaf soluble sugars and in whole-plant dry matter in Helianthus annuus L. grown under different water conditions. In: Ehleringer JR, Hall AE, Farquhar GD (eds): Stable isotope and plant carbon-water relations. Academic Press, San Diego, 93–108

    Google Scholar 

  40. Scartazza A, Lauteri M, Guido MC, Brugnoli E (1998) Carbon isotope discrimination in leaf and stem sugars, water-use efficiency and mesophyll conductance during different developmental stages in rice subjected to drought. Aust J Plant Physiol 25: 489–498

    Article  CAS  Google Scholar 

  41. Lauteri M, Pliura A, Monteverdi MC, Brugnoli E, Villani F, Eriksson G (2004) Genetic variation in carbon isotope discrimination in six European populations of Castanea sativa mill. Originating from contrasting localities. J Evol Biol 17:1286–1296

    Article  PubMed  CAS  Google Scholar 

  42. Pareek A, Singla S L, Grower A (1997) Salt responsive protein/genes in crop plants. In: PK Jaiwal, RP Singh, A Gulati (eds): Strategies for improving salt tolerance in higher plants. Oxford and IBH Publication, New Delhi, 365–391

    Google Scholar 

  43. Ansari R, Naqvi MS, Khanzada NA, Hubick KT (1988) Carbon isotopes discrimination in wheat cultivars under saline conditions. Pak J Bot 30: 87–93

    Google Scholar 

  44. Frederick CM, Plaut Z, Saliendra ZN (1994) Carbon isotope discrimination, gas exchange and growth of sugarcane cultivars under salinity. Plant Physiol 104: 521–526

    Google Scholar 

  45. Farquhar GD, Ehleringer JR, Hubik KT (1989) Carbon isotope discrimination and photosynthesis. Ann Rev Plant Physiol 11: 503–537

    Article  Google Scholar 

  46. Robinson SP, Downton WJS, Millhouse JA (1983) Photosynthesis and ion content of leaves and isolated chloroplasts of salt-stressed spinach. Plant Physiol 73: 238–242

    PubMed  CAS  Google Scholar 

  47. Shaheen R, Hood-Nowotny RC (2005) Effect of drought and salinity on carbon isotope discrimination in wheat cultivars. Plant Sci 168: 901–909

    Article  CAS  Google Scholar 

  48. Guehl, JM, Nguyen-Queyerens A, Loustau D, Ferhi A (1995) Genetic and environmental determinants of water-use efficiency and carbon isotope discrimination in forest trees. In: M Bonnet-Masimbert, H Sandermanns (eds): The EUROSILVA contribution to forest tree physiology. Editions Colloques de l’INRA, Paris, 297–321

    Google Scholar 

  49. Read JJ, Farquhar GD (1991) Comparative studies in Nothofagus (Fagaceae) leaf carbon isotope discrimination. Funct Ecol 5: 684–695

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag/Switzerland

About this paper

Cite this paper

Monteverdi, C.M., Lauteri, M., Valentini, R. (2008). Biodiversity of plant species and adaptation to drought and salt conditions. Selection of species for sustainable reforestation activity to combat desertification. In: Abdelly, C., Öztürk, M., Ashraf, M., Grignon, C. (eds) Biosaline Agriculture and High Salinity Tolerance. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8554-5_18

Download citation

Publish with us

Policies and ethics