Skip to main content

The Structure of Green Functions in Quantum Field Theory with a General State

  • Chapter
Quantum Field Theory

Abstract

In quantum field theory the Green function is usually calculated as the expectation value of the time-ordered product of fields over the vacuum. In some cases, especially in degenerate systems, expectation values over general states are required. The corresponding Green functions are essentially more complex than in the vacuum, because they cannot be written in terms of standard Feynman diagrams. Here a method is proposed to determine the structure of these Green functions and to derive nonperturbative equations for them. The main idea is to transform the cumulants describing correlations into interaction terms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. J. Dyson. Heisenberg operators in quantum electrodynamics. I. Phys. Rev. 82 (1951), 428–39.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. F. J. Dyson. Heisenberg operators in quantum electrodynamics. II. Phys. Rev. 83 (1951), 608–27.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. M. Gell-Mann and F. Low. Bound states in quantum field theory. Phys. Rev. 84 (1951), 350–4.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. A. L. Fetter and J. D. Walecka. Quantum Theory of Many-Particle Systems. McGraw-Hill, Boston (1971).

    Google Scholar 

  5. E. K. U. Gross, E. Runge and O. Heinonen. Many-Particle Theory. Adam Hilger, Bristol (1991).

    MATH  Google Scholar 

  6. S. Fujita. Introduction to Non Equilibrium Quantum Statistical Mechanics. Saunders, Philadelphia (1966).

    MATH  Google Scholar 

  7. A. G. Hall. Non-equilibrium Green functions: Generalized Wick’s theorem and diagrammatic perturbation theory with initial correlations. J. Phys. A: Math. Gen. 8 (1975), 214–25.

    Article  ADS  Google Scholar 

  8. D. M. Esterling and R. V. Lange. Degenerate mass operator perturbation theory in the Hubbard model. Rev. Mod. Phys. 40 (1968), 796–9.

    Article  ADS  Google Scholar 

  9. I. Lindgren, B. Åsén, S. Salomonson and A.-M. Mårtensson-Pendrill. QED procedure applied to the quasidegenerate fine-structure levels of He-like ions. Phys. Rev. A 64 (2001), 062505.

    Article  ADS  Google Scholar 

  10. P. A. Henning. On the treatment of initial correlations in quantum field theory of non-equilibrium states. Nucl. Phys. B 337 (1990), 547–68.

    Article  ADS  MathSciNet  Google Scholar 

  11. R. Fauser and H. H. Wolter. Non-equilibrium quantum field theory and perturbation theory. Nucl. Phys. A 584 (1995), 604–620.

    Article  ADS  Google Scholar 

  12. K. Symanzik. On the many-body structure of Green’s functions in quantum field theory. J. Math. Phys. 1 (1960), 249–73.

    Article  ADS  MathSciNet  Google Scholar 

  13. J. Schwinger. Brownian motion of a quantum oscillator. J. Math. Phys. 2 (1961), 407–32.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Y. A. Kukharenko and S. G. Tikhodeev. Diagram technique in the theory of relaxation processes. Soviet Phys. JETP 56 (1982), 831–8.

    Google Scholar 

  15. L. V. Keldysh. Diagram technique for nonequilibrium processes. Soviet Phys. JETP 20 (1965), 1018–26.

    MathSciNet  Google Scholar 

  16. J. Schwinger. On the Green’s functions of quantized fields. I. Proc. Nat. Acad. Sci. 37 (1951), 452–5.

    Article  ADS  MathSciNet  Google Scholar 

  17. K.-C. Chou, Z.-B. Su, B.-L. Hao and L. Yu. Equilibrium and nonequilibrium formalisms made unified. Phys. Repts. 118 (1985), 1–131.

    Article  ADS  MathSciNet  Google Scholar 

  18. W. Kutzelnigg and D. Mukherjee. Cumulant expansion of the reduced density matrices. J. Chem. Phys. 110 (1999), 2800–9.

    Article  ADS  Google Scholar 

  19. C. Brouder. Matrix elements of many-body operators and density correlations. Phys. Rev. A 72 (2005), 032720.

    Article  ADS  Google Scholar 

  20. S. Hollands and W. Ruan. The state space of perturbative quantum field theory in curved spacetimes. Ann. Inst. Henri Poincaré 3 (2003), 635–57.

    Article  MathSciNet  Google Scholar 

  21. S. G. Thikhodeev. Relations between many-body Green’s functions and correlation functions. Sov. Phys. Doklady 27 (1982), 492–3.

    ADS  Google Scholar 

  22. B. S. Kay and R. M. Wald. Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on spacetimes with a bifurcate Killing horizon. Phys. Repts. 207 (1991), 49–136.

    Article  ADS  MathSciNet  Google Scholar 

  23. S. G. Thikhodeev. On the vanishing of correlation-connected diagrams in Hall’s diagram technique. Sov. Phys. Doklady 27 (1982), 624–5.

    ADS  Google Scholar 

  24. P. Danielewicz. Quantum theory of nonequilibrium processes, I. Ann. Phys. 152 (1984), 239–304.

    Article  ADS  Google Scholar 

  25. C. Brouder. Green function hierarchy for open shells. Euro. Phys. Lett. 71 (2005), 556–62.

    Article  ADS  MathSciNet  Google Scholar 

  26. C. de Dominicis and F. Englert. Potential-correlation function duality in statistical physics. J. Math. Phys. 8 (1967), 2143–6.

    Article  ADS  Google Scholar 

  27. A. N. Vasil’ev and A. K. Kazanskii. Legendre transforms of the generating functionals in quantum field theory. Theor. Math. Phys. 12 (1972), 875–87.

    Article  Google Scholar 

  28. A. N. Vasil’ev and A. K. Kazanskii. Equations of motion for a Legendre transform of arbitrary order. Theor. Math. Phys. 14 (1973), 215–226.

    Article  MathSciNet  Google Scholar 

  29. A. N. Vasil’ev, A. K. Kazanskii and Y. M. Pis’mak. Diagrammatic analysis of the fourth Legendre transform. Theor. Math. Phys. 20 (1974), 754–62.

    Article  Google Scholar 

  30. A. N. Vasil’ev, A. K. Kazanskii and Y. M. Pis’mak. Equations for higher Legendre transforms in terms of 1-irreducible vertices. Theor. Math. Phys. 19 (1974), 443–53.

    Article  Google Scholar 

  31. A. N. Vasil’ev. The field theoretic renormalization group in critical behavior theory and stochastic dynamics. Chapman and Hall/CRC, New York (2004).

    Book  Google Scholar 

  32. Y. M. Pis’mak. Proof of the 3-irreducibility of the third Legendre transform. Theor. Math. Phys. 18 (1974), 211–8.

    Article  MathSciNet  Google Scholar 

  33. Y. M. Pis’mak. Combinatorial analysis of the overlapping problem for vertices with more than four legs. Theor. Math. Phys. 24 (1975), 649–58.

    Article  Google Scholar 

  34. Y. M. Pis’mak. Combinatorial analysis of the overlapping problem for vertices with more than four legs: II Higher Legendre transforms. Theor. Math. Phys. 24 (1975), 755–67.

    Article  Google Scholar 

  35. Y. M. Pis’mak. n-particle problem in quantum field theory and the functional Legendre transforms. Int. J. Mod. Phys. 7 (1992), 2793–808.

    Article  ADS  MathSciNet  Google Scholar 

  36. F. Aryasetiawan and O. Gunnarson. The GW method. Rep. Prog. Phys. 61 (1998), 237–312.

    Article  ADS  Google Scholar 

  37. S. Albrecht, L. Reining, R. D. Sole and G. Onida. Ab initio calculation of excitonic effects in the optical spectra of semiconductors. Phys. Rev. Lett. 80 (1998), 4510–3.

    Article  ADS  Google Scholar 

  38. L. X. Benedict, E. L. Shirley and R. B. Bohn. Optical absorption of insulators and the electron-hole interaction: An ab initio calculation. Phys. Rev. Lett. 80 (1998), 4514–7.

    Article  ADS  Google Scholar 

  39. C. Brouder. Many-body approach to crystal field theory. Phys. Stat. Sol. (c) 2 (2005), 472–5.

    Article  Google Scholar 

  40. I. Lindgren and J. Morrison. Atomic Many-Body Theory. Second edition. Springer-Verlag, (1986).

    Google Scholar 

  41. K. G. Wilson. Ab initio quantum chemistry: A source of ideas for lattice gauge theorists. Nucl. Phys. Suppl. 17 (1990), 82–92.

    Article  ADS  Google Scholar 

  42. M. Dütsch and K. Fredenhagen. Causal perturbation theory in terms of retarded products, and a proof of the Action Ward Identity. Rev. Math. Phys. 16 (2004), 1291–348.

    Article  MATH  MathSciNet  Google Scholar 

  43. M. Veltman. Unitarity and causality in a renormalizable field theory with unstable particles. Physica 29 (1963), 186–207.

    Article  MATH  MathSciNet  Google Scholar 

  44. S. Sivasubramanian, Y. N. Srivastava, G. Vitiello and A. Widom. Quantum dissipation induced noncommutative geometry. Phys. Lett. A 311 (2003), 97–105.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  45. S. S. Fanchenko. Generalized diagram technique of nonequilibrium processes. Theor. Math. Phys. 55 (1983), 406–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Brouder, C. (2009). The Structure of Green Functions in Quantum Field Theory with a General State. In: Fauser, B., Tolksdorf, J., Zeidler, E. (eds) Quantum Field Theory. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8736-5_10

Download citation

Publish with us

Policies and ethics