Skip to main content

On the Schrödinger Operator with Limit-periodic Potential in Dimension Two

  • Conference paper
Methods of Spectral Analysis in Mathematical Physics

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 186))

Abstract

This is an an nouncement of the following results. We consider the Schrödinger operator H=−Δ+V(x) in dimension two, V(x) being a limitperiodic potential. We prove that the spectrum of H contains a semiaxis and there is a family of generalized eigenfunctions at every point of this semiaxis with the following properties. First, the eigenfunctions are close to plane waves e{ei257-1} at the high energy region. Second, the isoenergetic curves in the space of momenta \( \vec k \) corresponding to these eigenfunctions have a form of slightly distorted circles with holes (Cantor type structure). Third, the spectrum corresponding to the eigenfunctions (the semiaxis) is absolutely continuous.

Research partially supported by USNSF Grant DMS-0800949.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Ayron, B. Simon Almost Periodic Schrödinger Operators I: Limit Periodic Potentials. Commun. Math. Physics, 82 (1981), 101–120.

    Article  Google Scholar 

  2. V.A. Chulaevski On perturbation of a Schrödinger Operator with Periodic Potential. Russian Math. Surv., 36(5), (1981), 143–144.

    Article  Google Scholar 

  3. J. Moser, An Example of the Schrödinger Operator with Almost-Periodic Potentials and Nowhere Dense Spectrum. Comment. Math. Helv., 56 (1981), 198–224.

    Article  MATH  MathSciNet  Google Scholar 

  4. B. Simon Almost Periodic Schrödinger Operators. A Review. Advances in Applied Mathematics, 3 (1982), 463–490.

    Article  MATH  MathSciNet  Google Scholar 

  5. L.A. Pastur, V.A. Tkachenko On the Spectral Theory of the One-Dimensional Schrödinger Operator with Limit-Periodic Potential. Dokl. Akad. Nauk SSSR, 279 (1984), 1050–1053; Engl. Transl.; Soviet Math. Dokl., 30 (1984), no. 3, 773–776

    MathSciNet  Google Scholar 

  6. L.A. Pastur, V.A. Tkachenko Spectral Theory of a Class of One-Dimensional Schrödinger Operators with Limit-Periodic Potentials. Trans. Moscow Math. Soc., 51 (1989), 115–166.

    MathSciNet  Google Scholar 

  7. L. Pastur, A. Figotin Spectra of Random and Almost-Periodic Operators. Springer-Verlag, 1992, 583 pp.

    Google Scholar 

  8. J. Avron, B. Simon Cantor Sets and Schrödinger Operators: Transient and Recurrent Spectrum. J. Func. Anal. 43 (1981), 1–31.

    Article  MATH  MathSciNet  Google Scholar 

  9. S.A. Molchanov and V.A. Chulaevskii Structure of the Spectrum of Lacunary Limit-Periodic Schrödinger Operator. Func. Anal. Appl., 18 (1984), 91–92.

    MathSciNet  Google Scholar 

  10. L. Zelenko On a Generic Topological Structure of the Spectrum to One-Dimensional Schrödinger Operators with Complex Limit-Periodic Potentials. Integral Equations and Operator Theory, 50 (2004), 393–430.

    Article  MATH  MathSciNet  Google Scholar 

  11. M.A. Shubin The Density of States for Selfadjoint Elliptic Operators with Almost Periodic Coefficients. Trudy sem. Petrovskii (Moscow University), 3, (1978), 243–275.

    MATH  Google Scholar 

  12. M.A. Shubin Spectral Theory and Index of Elliptic Operators with Almost Periodic Coefficients. Russ. Math. Surveys, 34(2), (1979), 109–157.

    Article  MATH  MathSciNet  Google Scholar 

  13. J. Avron, B. Simon Almost Periodic Schrödinger Operators. II: The Integrated Density of States. Duke Math. J., 50 (1983), 1, 369–391.

    Article  MATH  MathSciNet  Google Scholar 

  14. G.V. Rozenblum, M.A. Shubin, M.Z. Solomyak Spectral Theory of Differential Operators. Encyclopaedia of Mathematical, Sciences, 64, 1994.

    Google Scholar 

  15. Yu.P. Chuburin On the Multidimensional Discrete Schrödinger Equation with a Limit Periodic Potential. Theoretical and Mathematical Physics, 102 (1995), no. 1, 53–59.

    Article  MATH  MathSciNet  Google Scholar 

  16. M.M. Skriganov, A.V. Sobolev On the spectrum of a limit-periodic Schrödinger operator. Algebra i Analiz, 17 (2005), 5; English translation: st. Petersburg Math. J. 17 (2006), 815–833.

    Google Scholar 

  17. G. Gallavotti, Perturbation Theory for Classical Hamiltonian Systems. Scaling and Self-Similarity in Progr. Phys., 7, edited by J. Froehlich, Birkhäuser, Basel, Switzerland, 1983, 359–424.

    Google Scholar 

  18. L.E. Thomas, S.R. Wassel, Stability of Hamiltonian systems at high energy. J. Math. Phys. 33(10), (1992), 3367–3373.

    Article  MATH  MathSciNet  Google Scholar 

  19. L.E. Thomas and S.R. Wassel, Semiclassical Approximation for Schrödinger Operators at High Energy, Lecture Notes in Physics, 403, edited by E. Balslev, Springer-Verlag, 1992, 194–210.

    Google Scholar 

  20. J. Bourgain, Quasiperiodic Solutions of Hamilton Perturbations of 2D Linear Schrödinger Equation. Ann. of Math. (2), 148 (1998), 2, 363–439.

    Google Scholar 

  21. M. Reed, B. Simon, Methods of Modern Mathematical Physics, Vol. IV, Academic Press, 3rd ed., New York-San Francisco-London, (1987), 396 pp.

    Google Scholar 

  22. Yu. Karpeshina Perturbation theory for the Schrödinger operator with a periodic potential. Lecture Notes in Mathematics, 1663, Springer-Verlag, 1997, 352 pp.

    Google Scholar 

  23. Yu. Karpeshina, Y.-R. Lee Spectral Properties of Polyharmonic Operators with Limit-Periodic Potential in Dimension Two. D’Analyse Mathématique, 102 (2007), pp. 225–310.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Boris S. Pavlov on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Karpeshina, Y., Lee, YR. (2008). On the Schrödinger Operator with Limit-periodic Potential in Dimension Two. In: Janas, J., Kurasov, P., Naboko, S., Laptev, A., Stolz, G. (eds) Methods of Spectral Analysis in Mathematical Physics. Operator Theory: Advances and Applications, vol 186. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8755-6_13

Download citation

Publish with us

Policies and ethics