Skip to main content

Septic Shock Diagnosis by Neural Networks and Rule Based Systems

  • Chapter
Computational Intelligence Processing in Medical Diagnosis

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 96))

Abstract

In intensive care units physicians are aware of a high lethality rate of septic shock patients. In this contribution we present typical problems and results of a retrospective, data driven analysis based on two neural network methods applied on the data of two clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berthold, M. (1999), “Fuzzy logic,” Chapter 8 in Berthold, M. and Hand, D.J. (Eds.), Intelligent Data Analysis: an Introduction, Springer-Verlag, pp. 269–298.

    Google Scholar 

  2. Berthold, M. and Diamond, J. (1995), “Boosting the performance of RBF networks with dynamic decay adjustment,” Advances in Neural Information Processing Systems, vol. 7, pp. 521–528.

    Google Scholar 

  3. Berthold, M. and Diamond, J. (1998), “Constructive training of probabilistic neural networks,” Neurocomputing, vol. 19, pp. 167–183.

    Article  Google Scholar 

  4. Brause, R. and Hanisch, E. (2000), Medical Data Analysis ISMDA 2000, Springer Lecture Notes in Comp.Sc., LNCS 1933, Springer Verlag, Heidelberg.

    Google Scholar 

  5. Brause, R. (1999), “Revolutionieren neuronale Netze unsere Vorhersagefähigkeiten?” Zentralblatt für Chirurgie, vol. 124, pp. 692–698.

    Google Scholar 

  6. Brause, R. and Friedrich, F. (2000), “A neuro-fuzzy approach as medical diagnostic interface,” Proc. ESANN 2000, De Facto Publ., Brussels, pp. 201–206.

    Google Scholar 

  7. Bruske, J. (1998), “Dynamische Zellstrukturen. Theorie und Anwendung eines KNN-Modells,” Dissertation, Technische Fakultät der Christian-Albrechts-Universität, Kiel, Germany.

    Google Scholar 

  8. Bruske, J. and Sommer, G. (1995), “Dynamic cell structure learns perfectly topology preserving map,” Neural Computation, vol. 7, pp. 845–865.

    Article  Google Scholar 

  9. Bellman, R. (1961), Adaptive Control Processes: a Guided Tour, Princeton, NJ: Princeton University Press.

    Google Scholar 

  10. Dybowski, R. (1997), “Assigning confidence intervals to neural network predictions,” Technical Report, Division of Infection, UMDS (St Thomas’ Hospital), London, 2 March 1997, available at http://www.umds.ac.uk/microbio/richard/nnci.pdf.

  11. Fein, A.M. et al. (Eds.) (1997), Sepsis and Multiorgan Failure, Williams and Wilkins, Baltimore.

    Google Scholar 

  12. Fritzke, B. (1994), “Fast learning with incremental RBF networks,” Neural Processing Letters, vol. 1, no. 1, pp. 2–5.

    Article  Google Scholar 

  13. Fritzke, B. (1995), “A growing neural gas network learns topologies,” in: Tesauro, G., Touretzky, D.S., and Leen, T.K. (Eds.), Proc. Advances in Neural Information Processing Systems (NIPS 7), MIT Press, Cambridge, MA, pp. 625–632.

    Google Scholar 

  14. Fritzke, B. (1997), “Incremental neuro-fuzzy systems,” in: Bosacchi, B., Bezdek, J.C., and Fogel, D.B. (Eds.), Proc. SPIE, vol. 3165, Applications of Soft Computing, pp. 86–97.

    Google Scholar 

  15. Geisser, S. (1975), “The predictive sample reuse method with applications,” Journal of The American Statistical Association, vol. 70, pp. 320–328.

    Article  Google Scholar 

  16. Hamker, F., Paetz, J., Thöne, S., Brause, R., and Hanisch, E. (2000), `Erkennung kritischer Zustände von Patienten mit der Diagnose `Septischer Schock’ mit einem RBF-Netz,“ Tech. Report, Interner Bericht 04/00, Fachbereich Informatik, J.W. Goethe-Uni-versität Frankfurt a. M., http://www.cs.uni-frankfurt.de/fbreports/ fbreport04–00.pdf.

    Google Scholar 

  17. Hartung, J. (1993), Statistik: Lehr-und Handbuch der Angewandten Statistik, Oldenbourg-Verlag, München.

    Google Scholar 

  18. Haykin, S. (1999), Neural Networks, a Comprehensive Foundation, Prentice Hall, 2nd edition, Upper Saddle River, NJ 07458.

    Google Scholar 

  19. Heinke, D. and Hamker, F. (1998), “Comparing neural networks, a benchmark on growing neural gas, growing cell structures, and fuzzy ARTMAP,” IEEE Transactions on Neural Networks, vol. 9, no. 6, pp. 1279–1291.

    Article  PubMed  CAS  Google Scholar 

  20. Huber, K.-P. and Berthold, M.R. (1995), “Building precise classifiers with automatic rule extraction,” IEEE International Conference on Neural Networks, vol. 3, pp. 1263–1268.

    Google Scholar 

  21. Inza I., Merino M., Larranaga P., Quiroga J., Sierra B., and Girala M. (2000), “Feature subset selection using probabilistic tree structures. a case study in the survival of cirrhotic patients treated with TIPS,” in [4], pp. 97–110.

    Google Scholar 

  22. Kindermann, L., Lewandowski, A., Tagscherer, M., and Protzel, P. (1999), “Computing confidence measures and marking unreliable predictions by estimating input data densities with MLPs,” Proceedings of the Sixth International Conference on Neural Information Processing (ICONIP ‘89), Perth, Australia, pp. 91–94.

    Google Scholar 

  23. Lavrac, N. (1999), “Machine learning for data mining in medicine,” in: Horn, W. et al (Eds.), Proc. AIMDM’99. LNAI 1620, Springer-Verlag, Berlin Heidelberg, pp. 47–62.

    Google Scholar 

  24. Martinetz, T.M. and Schulten, K.J. (1994), “Topology representing networks,” Neural Networks, vol. 7, pp. 507–522.

    Article  Google Scholar 

  25. Members of the American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference Committee (1992), “Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis,” Crit. Care Med., vol. 20, pp. 864–874.

    Article  Google Scholar 

  26. Mosteller, F. and Tukey, J.W. (1968), “Data analysis, including statistics,” in: Lindzey, G. and Aronson, E. (Eds.), Handbook of Social Psychology 2, Addison-Wesley.

    Google Scholar 

  27. Nauck, D. (1999), “Obtaining interpretable fuzzy classification rules from medical data,” Artificial Intelligence in Medicine, vol. 16, no. 2, pp. 149–169.

    Article  PubMed  CAS  Google Scholar 

  28. Neugebauer, E. and Lefering, R. (1996), “Scoresysteme und Datenbanken in der Intensivmedizin — Notwendigkeit und Grenzen,” Intensivmedizin, vol. 33, pp. 445–447.

    Google Scholar 

  29. Paetz, J., Hamker, F., and Thöne, S. (2000), “About the analysis of septic shock patient data,” in [4], pp. 130–137. Also available at http://www.cs.uni-frankfurt.de/~ paetz/PaetzISMDA2000.pdf.

    Google Scholar 

  30. Pietruschka, U. and Brause, R. (1999), “Using growing RBF nets in rubber industry process control,” Neural Computing and Applications, Springer Verlag, vol. 8, no. 2, pp. 95–105.

    Google Scholar 

  31. Schumacher, M., Rößner, R., and Vach, W. (1996), “Neural networks and logistic regression, part I,” Computational Statistics and Data Analysis, vol. 21, pp. 661–682.

    Article  Google Scholar 

  32. Seely, A. and Christou, N. (2000), “Multiple organ dysfunction syndrome, exploring the paradigm of complex nonlinear systems,” Crit. Care Med., vol. 28, no. 7, pp. 2193–2200.

    Article  PubMed  CAS  Google Scholar 

  33. Tagscherer, M., Kindermann, L., Lewandowski, A., and Protzel, P. (1999), “Overcome neural limitations for real world applications by providing confidence values for network predictions,” Proceedings of the Sixth International Conference on Neural Information Processing (ICONIP ‘89), Perth, Australia, pp. 520–525.

    Google Scholar 

  34. Toweill, D., Sonnenthal, K., Kimberly, B., Lai, S., and Goldstein, B. (2000), “Linear and nonlinear analysis of hemodynamic signals during sepsis and septic shock,” Crit. Care Med., vol. 28, no. 6, pp. 2051–2057.

    Article  PubMed  CAS  Google Scholar 

  35. Vach, W., Roner, R., and Schumacher, M. (1996), “Neural networks and logistic regression: part II,” Computational Statistics and Data Analysis, vol. 21, 683–701.

    Article  Google Scholar 

  36. Wade, S., Büssow, M, and Hanisch, E. (1998), “Epidemiology of systemic inflammatory response syndrome, sepsis and septic shock in surgical intensive care patients,” Chirurg, vol. 69, pp. 648–655.

    Article  PubMed  CAS  Google Scholar 

  37. Wahba, G. and Wold, S. (1975), “A completely automatic French curve: fitting spline functions by cross-validation,” Communications in Statistics, vol. 4, pp. 1–17.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brause, R., Hamker, F., Paetz, J. (2002). Septic Shock Diagnosis by Neural Networks and Rule Based Systems. In: Schmitt, M., Teodorescu, HN., Jain, A., Jain, A., Jain, S., Jain, L.C. (eds) Computational Intelligence Processing in Medical Diagnosis. Studies in Fuzziness and Soft Computing, vol 96. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1788-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1788-1_12

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-2509-1

  • Online ISBN: 978-3-7908-1788-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics