Skip to main content

Part of the book series: Experimentator ((EXPERIMENTATOR))

  • 9916 Accesses

Zusammenfassung

Im Gegensatz zu den bislang vorgestellten Methoden, mit denen zelluläre und molekulare Mechanismen neuronaler Verarbeitung untersucht werden können, stellt die Verhaltensbiologie einen systemischen Ansatz zur Untersuchung neuronaler Prozesse im intakten Organismus dar. Die Verhaltensbiologie oder auch vergleichende Verhaltensforschung wird in der Fachsprache als Ethologie (»die Lehre des Charakters«) bezeichnet und stellt als Teilgebiet der Zoologie eine Nachbardisziplin zur Psychologie dar. Die Verhaltensforschung hat eine lange Tradition und versucht seit mehr als 100 Jahren, mit Hilfe der systematischen Beobachtung von Mensch und Tier Rückschlüsse auf die evolutive Anpassung des Verhaltens an die Umwelt zu ziehen und Gesetzmäßigkeiten für bestimmte Verhaltensstrategien abzuleiten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Verhalten allgemein

  • (1997). Mutant mice and neuroscience: recommendations concerning genetic background. Banbury Conference on genetic background in mice. Neuron 19, 755–759.

    Google Scholar 

  • Bailey KR, Rustay NR, Crawley JN (2006) Behavioral phenotyping of transgenic and knockout mice: practical concerns and potential pitfalls. ILAR J 47, 124–131.

    PubMed  CAS  Google Scholar 

  • Bothe GW, Bolivar VJ, Vedder MJ, Geistfeld JG (2005) Behavioral differences among fourteen inbred mouse strains commonly used as disease models. Comp Med 55, 326–334.

    PubMed  CAS  Google Scholar 

  • Brown RE (2007) Behavioural phenotyping of transgenic mice. Can J Exp Psychol 61, 328–344.

    PubMed  Google Scholar 

  • Crabbe JC, Wahlsten D (2003) Of mice and their environments. Science 299, 1313–1314.

    Article  PubMed  CAS  Google Scholar 

  • Crabbe JC, Wahlsten D, Dudek BC (1999) Genetics of mouse behavior: interactions with laboratory environment. Science 284, 1670–1672.

    Article  PubMed  CAS  Google Scholar 

  • Crawley JN (1999) Behavioral phenotyping of transgenic and knockout mice: experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests. Brain Res 835, 18–26.

    Article  PubMed  CAS  Google Scholar 

  • Crawley JN (2008) Behavioral phenotyping strategies for mutant mice. Neuron 57, 809–818.

    Article  PubMed  CAS  Google Scholar 

  • Crawley JN, Belknap JK, Collins A, Crabbe JC, Frankel W, Henderson N, Hitzemann RJ, Maxson SC, Miner LL, Silva AJ et al. (1997) Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology (Berl) 132, 107–124.

    Article  CAS  Google Scholar 

  • Crusio WE (1999) Using spontaneous and induced mutations to dissect brain and behavior genetically. Trends Neurosci 22, 100–102.

    Article  PubMed  CAS  Google Scholar 

  • Doetschman T (2009) Influence of genetic background on genetically engineered mouse phenotypes. Methods Mol Biol 530, 423–433.

    Article  PubMed  CAS  Google Scholar 

  • Fossella JA, Casey BJ (2006) Genes, brain, and behavior: bridging disciplines. Cogn Aff ect Behav Neurosci 6, 1–8.

    Article  Google Scholar 

  • Garner JP, Mason GJ (2002) Evidence for a relationship between cage stereotypies and behavioural disinhibition in laboratory rodents. Behav Brain Res 136, 83–92.

    Article  PubMed  Google Scholar 

  • Gerlai R, Clayton NS (1999) Analysing hippocampal function in transgenic mice: an ethological perspective. Trends Neurosci 22, 47–51.

    Article  PubMed  CAS  Google Scholar 

  • Gingrich JA, Hen R (2000) The broken mouse: the role of development, plasticity and environment in the interpretation of phenotypic changes in knockout mice. Curr Opin Neurobiol 10, 146–152.

    Article  PubMed  CAS  Google Scholar 

  • Hatcher JP, Jones DN, Rogers DC, Hatcher PD, Reavill C, Hagan JJ, Hunter AJ (2001) Development of SHIRPA to characterise the phenotype of gene-targeted mice. Behav Brain Res 125, 43–47.

    Article  PubMed  CAS  Google Scholar 

  • Lipp HP, Wolfer DP (1998) Genetically modified mice and cognition. Curr Opin Neurobiol 8, 272–280.

    Article  PubMed  CAS  Google Scholar 

  • Martin JE, Fisher EM (1997) Phenotypic analysis – making the most of your mouse. Trends Genet 13, 254–256.

    Article  PubMed  CAS  Google Scholar 

  • Nelson RJ, Young KA (1998) Behavior in mice with targeted disruption of single genes. Neurosci Biobehav Rev 22, 453–462.

    Article  PubMed  CAS  Google Scholar 

  • Picciotto MR, Wickman K (1998) Using knockout and transgenic mice to study neurophysiology and behavior. Physiol Rev 78, 1131–1163.

    PubMed  CAS  Google Scholar 

  • Richter SH, Garner JP, Wurbel H (2009) Environmental standardization: cure or cause of poor reproducibility in animal experiments? Nat Methods 6, 257–261.

    Article  PubMed  CAS  Google Scholar 

  • Rogers DC, Peters J, Martin JE, Ball S, Nicholson SJ, Witherden AS, Hafezparast M, Latcham J, Robinson TL, Quilter CA, Fisher EM (2001) SHIRPA, a protocol for behavioral assessment: validation for longitudinal study of neurological dysfunction in mice. Neurosci Lett 306, 89–92.

    Article  PubMed  CAS  Google Scholar 

  • Steele PM, Medina JF, Nores WL, Mauk MD (1998) Using genetic mutations to study the neural basis of behavior. Cell 95, 879–882.

    Article  PubMed  CAS  Google Scholar 

  • Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503–512.

    Article  PubMed  CAS  Google Scholar 

  • Valor LM, Grant SG (2007) Clustered gene expression changes flank targeted gene loci in knockout mice. PLoS ONE 2, e1303.

    Article  CAS  Google Scholar 

  • Wolfer DP, Crusio WE, Lipp HP (2002) Knockout mice: simple solutions to the problems of genetic background and flanking genes. Trends Neurosci 25, 336–340.

    Article  PubMed  CAS  Google Scholar 

  • Wolfer DP, Stagljar-Bozicevic M, Errington ML, Lipp HP (1998) Spatial Memory and Learning in Transgenic Mice: Fact or Artifact? News Physiol Sci 13, 118–123.

    PubMed  Google Scholar 

  • Wong GT(2002) Speed congenics: applications for transgenic and knock-out mouse strains. Neuropeptides 36, 230–236.

    Article  PubMed  CAS  Google Scholar 

  • Wurbel H (2001) Ideal homes? Housing effects on rodent brain and behaviour. Trends Neurosci 24, 207–211.

    Article  PubMed  CAS  Google Scholar 

  • Wurbel H (2007) Environmental enrichment does not disrupt standardisation of animal experiments. ALTEX 24 Spec No, 70–73.

    PubMed  Google Scholar 

Lerntests

  • Aggleton JP, Brown MW (2005) Contrasting hippocampal and perirhinal cortex function using immediate early gene imaging. Q J Exp Psychol B 58, 218–233.

    Article  PubMed  Google Scholar 

  • Barnes CA (1979) Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J Comp Physiol Psychol 93, 74–104.

    Article  PubMed  CAS  Google Scholar 

  • Bermudez-Rattoni F, Ramirez-Lugo L, Gutierrez R, Miranda MI (2004) Molecular signals into the insular cortex andamygdala during aversive gustatory memory formation. Cell Mol Neurobiol 24, 25–36.

    Article  PubMed  CAS  Google Scholar 

  • Buckley MJ (2005) The role of the perirhinal cortex and hippocampus in learning, memory, and perception. Q J Exp Psychol B 58, 246–268.

    Article  PubMed  Google Scholar 

  • Crawley J, Goodwin FK (1980) Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav 13, 167–170.

    Article  PubMed  CAS  Google Scholar 

  • Finn DA, Rutledge-Gorman, MT, Crabbe, JC (2003) Genetic animal models of anxiety. Neurogenetics 4, 109–135.

    PubMed  Google Scholar 

  • Harrison FE, Reiserer RS, Tomarken AJ, McDonald MP (2006) Spatial and nonspatial escape strategies in the Barnes maze. Learn Mem 13, 809–819.

    Article  PubMed  Google Scholar 

  • Milner B, Squire LR, Kandel ER (1998) Cognitive neuroscience and the study of memory. Neuron 20, 445–468.

    Article  PubMed  CAS  Google Scholar 

  • Morris R (1984) Developments of a water maze procedure for studying spatial learning in the rat. J Neurosci Methods 11, 47–60.

    Article  PubMed  CAS  Google Scholar 

  • Patil SS, Sunyer B, Hoger H, Lubec G (2009) Evaluation of spatial memory of C57BL/6J and CD1 mice in the Barnes maze, the Multiple T-maze and in the Morris Water Maze. Behav Brain Res 198, 58–68.

    Article  PubMed  Google Scholar 

  • Reilly S, Bornovalova MA (2005) Conditioned taste aversion and amygdala lesions in the rat: a critical review. Neurosci Biobehav Rev 29, 1067–1088.

    Article  PubMed  Google Scholar 

  • Plath N, Ohana O, Dammermann B, Errington ML, Schmitz D, Gross C, Mao X, Engelsberg A, Mahlke C, Welzl H, et al. (2006) Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories. Neuron 52, 437–444.

    Article  PubMed  CAS  Google Scholar 

  • Shepherd JK, Grewal SS, Fletcher A, Bill DJ, Dourish CT (1994) Behavioural and pharmacological characterisation of the elevated »zero-maze« as an animal model of anxiety. Psychopharmacology (Berl) 116, 56–64.

    Article  CAS  Google Scholar 

  • Welzl H, D’Adamo P, Lipp HP (2001) Conditioned taste aversion as a learning and memory paradigm. Behav Brain Res 125, 205–213.

    Article  PubMed  CAS  Google Scholar 

  • Winters BD, Saksida LM, Bussey TJ (2008) Object recognition memory: neurobiological mechanisms of encoding, consolidation and retrieval. Neurosci Biobehav Rev 32, 1055–1070.

    Article  PubMed  Google Scholar 

  • Wolfer DP, Madani R, Valenti P, Lipp HP (2001) Extended analysis of path data from mutant mice using the public domain software Wintrack. Physiol Behav 73, 745–753.

    Article  PubMed  CAS  Google Scholar 

Neurologische Erkrankungen

  • Brusa R (1999) Genetically modified mice in neuropharmacology. Pharmacol Res 39, 405–419.

    Article  PubMed  CAS  Google Scholar 

  • Chourbaji S, Vogt MA, Gass P (2008) Mice that under- or overexpress glucocorticoid receptors as models for depression or posttraumatic stress disorder. Prog Brain Res 167, 65–77.

    Article  PubMed  CAS  Google Scholar 

  • Crawley JN (2004) Designing mouse behavioral tasks relevant to autistic-like behaviors. Ment Retard Dev Disabil Res Rev 10, 248–258.

    Article  PubMed  Google Scholar 

  • Crawley JN (2007) Mouse behavioral assays relevant to the symptoms of autism. Brain Pathol 17, 448–459.

    Article  PubMed  Google Scholar 

  • Geyer MA (2008) Developing translational animal models for symptoms of schizophrenia or bipolar mania. Neurotox Res 14, 71–78.

    Article  PubMed  CAS  Google Scholar 

  • Holmes A (2001) Targeted gene mutation approaches to the study of anxiety-like behavior in mice. Neurosci Biobehav Rev 25, 261–273.

    Article  PubMed  CAS  Google Scholar 

  • Li L, Du Y, Li N, Wu X, Wu Y (2009) Top-down modulation of prepulse inhibition of the startle reflex in humans and rats. Neurosci Biobehav Rev 33, 1157–1167.

    Article  PubMed  Google Scholar 

  • Nadler JJ, Moy SS, Dold G, Trang D, Simmons N, Perez A, Young NB, Barbaro RP, Piven J, Magnuson TR, Crawley JN (2004) Automated apparatus for quantitation of social approach behaviors in mice. Genes Brain Behav 3, 303–314.

    Article  PubMed  CAS  Google Scholar 

  • Paylor R, Crawley JN (1997) Inbred strain differences in prepulse inhibition of the mouse startle response. Psychopharmacology (Berl) 132, 169–180.

    Article  CAS  Google Scholar 

  • Porsolt RD, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229, 327–336.

    PubMed  CAS  Google Scholar 

  • Porsolt RD, Le Pichon M, Jalfre M (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature 266, 730–732.

    Article  PubMed  CAS  Google Scholar 

  • Seong E, Seasholtz AF, Burmeister M (2002) Mouse models for psychiatric disorders. Trends Genet 18, 643–650.

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Weber M, Qu Y, Light G.A., Braff DL (2008) Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacology (Berl) 199, 331–388.

    Article  CAS  Google Scholar 

  • Weiner I, Arad M (2009) Using the pharmacology of latent inhibition to model domains of pathology in schizophrenia and their treatment. Behav Brain Res 204, 369–386.

    Article  PubMed  CAS  Google Scholar 

Bücher

  • Crawley JN (2000) What’s wrong with my mouse? Behavioral Phenotyping of Transgenic and Knockout Mice. John Wiley & Sons, Inc.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Spektrum Akademischer Verlag Heidelberg

About this chapter

Cite this chapter

Mahlke, C. (2010). Verhaltensbiologie. In: Der Experimentator: Neurowissenschaften. Experimentator. Spektrum Akademischer Verlag. https://doi.org/10.1007/978-3-8274-2369-6_9

Download citation

Publish with us

Policies and ethics