Skip to main content

Models for host-macroparasite interactions in micromammals

  • Chapter
Micromammals and Macroparasites

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abu-Madi MA, Behnke JM, Lewis JW, Gilbert FS (1998) Descriptive epidemiology of Heligmosomoides polygyrus in Apodemus sylvaticus from three contrasting habitats in south-east England. J Helmintol 72:93–100

    Article  Google Scholar 

  • Adler FR, Kretzschmar M (1992) Aggregation and stability in parasite-host models. Parasitology 104:199–205

    PubMed  Google Scholar 

  • Anderson RC (2000) Nematode parasites of vertebrates: Their development and transmission, 2nd edn. CABI, Wallingford

    Google Scholar 

  • Anderson RM, May RM (1978) Regulation and stability of host-parasite population interactions. I. Regulatory processes. J Anim Ecol 47:219–247

    Article  Google Scholar 

  • Anderson RM, May RM (1982) Coevolution of hosts and parasites. Parasitology 85:411–426

    PubMed  Google Scholar 

  • Anderson RM, May RM (1985) Age-related changes in the rate of transmission: Implications for the design of vaccinations programmes. J Hyg 94:365–436

    Article  CAS  Google Scholar 

  • Arneberg P, Skorping A, Read AF (1998) Parasite abundance, body size, life histories and the energetic equivalent rule. Amer Nat 151:497–513

    Article  CAS  Google Scholar 

  • Bailey NTJ (1975). The mathematical theory of infectious diseases and its applications. Griffin, London

    Google Scholar 

  • Begon M, Bowers RG (1995) Beyond host-pathogen dynamics. In: Grenfell BT, Dobson AP (eds) Ecology of infectious diseases in natural populations. Cambridge Univ Press, Cambridge, pp 478–509

    Google Scholar 

  • Behnke JM, Keymer AE, Lewis JW (1991) Heligmosomoides polygyrus or Nematospiroides Dubius? Parasitol Today 7:177–179

    Article  PubMed  CAS  Google Scholar 

  • Behnke JM, Lewis JW, Mohd Zain SN, Gilbert FS (1999) Helminth infections in Apodemus sylvaticus in southern England: Interactive effects of host age, sex and year on the prevalence and abundance of infections. J Helmintol 73:31–44

    CAS  Google Scholar 

  • Cattadori IM, Boag B, Björnstadt ON, Cornell SJ, Hudson PJ (2005) Peak shift and epidemiology in a seasonal host-nematode system. Proc R Soc Lond B 272:1163–1169

    Article  CAS  Google Scholar 

  • Chan MS, Mutapi F, Woolhouse MEJ, Isham VS (2000) Stochastic simulation and the detection of immunity to schistosome infections. Parasitology 120:161–169

    Article  PubMed  Google Scholar 

  • Cornell S (2005) Modelling nematodes populations: 20 years of progress. Trends Parasitol 11:483–546

    Google Scholar 

  • Craine NG, Randolph SE, Nuttall PA (1995) Seasonal variation in the role of grey squirrels as hosts of Ixodes ricinus, the tick vector of the Lyme disease spirochaete, in a British woodland. Folia Parasitol 42:73–80

    PubMed  CAS  Google Scholar 

  • Crofton HD (1971) A quantitative approach to parasitism. Parasitology 63:179–193

    Google Scholar 

  • Diekmann O, Kretzschmar M (1991) Patterns in the effects of infectious diseases on population growth. J Math Biol 29:539–570

    Article  PubMed  CAS  Google Scholar 

  • Dobson AP, Hudson PJ (1992) Regulation and stability of a free-living hostparasite system: Trichostrongylus tenuis in red grouse. II. Population models. J Anim Ecol 61:487–498

    Article  Google Scholar 

  • Duerr HP, Dietz K, Eichner M (2003) On the interpretation of age-intensity profiles and dispersion patterns in parasitological surveys. Parasitology 126:87–101

    Article  PubMed  CAS  Google Scholar 

  • Eisen L, Lane RS (2002) Vectors of Borrelia burgdorferi sensu lato. In: Gray O, Kahl RS, Lane RS, Stanek G (eds) Lyme borreliosis: Biology, epidemiology and control, CABI, New York, pp 91–115

    Google Scholar 

  • Enriquez FJ, Scarpino V, Cypress RH, Wassom DL (1988) In vivo and in vitro egg production by Nematospiroides dubius during primary and challenge infections in resistant and susceptible strains of mice. J Parasitol 74:262–266

    Article  PubMed  CAS  Google Scholar 

  • Fernàndez S, Å arkunas M, Roepstorff A (2001) Survival of infective Ostertagia Ostertagi larvae on pasture plots under different simulated grazing conditions. Vet Parasitol 96:291–299

    Article  PubMed  Google Scholar 

  • Ferrari N, Cattadori IM, Nespereira J, Rizzoli A., Hudson PJ (2004) The role of host sex in parasite dynamics: Field experiments on the yellow-necked mouse Apodemus flavicollis. Ecol Lett 7:88–94

    Article  Google Scholar 

  • Flowerdew J (1984) Wood mice. Anthony Nelson, Oswestry, Shropshire

    Google Scholar 

  • Gaba S, Ginot V, Cabaret J (2005) Modelling macroparasite aggregation using a nematode-sheep system: The Weibull distribution as an alternative to the negative binomial distribution? Parasitology 131:393–401

    Article  PubMed  CAS  Google Scholar 

  • Gern L, Rais O (1996) Efficient transmission of Borrelia burgdorferi between cofeeding Ixodes ricinus ticks (Acari: Ixodidae). J Med Entomol 33:189–192

    PubMed  CAS  Google Scholar 

  • Ghosh, M, Pugliese A (2004) Seasonal population dynamics of ticks, and its influence on infection transmission: A semi-discrete approach. Bull Math Biol 66:1659–168

    Article  PubMed  Google Scholar 

  • Gilbert L, Norman R, Laurenson KM, Reid HW, Hudson PJ (2001) Disease persistence and apparent competition in a three-host community: An empirical and analytical study of large-scale, wild populations. J Anim Ecol 70:1053–1061

    Article  Google Scholar 

  • Gregory RD (1991) Parasite epidemiology and host population growth: Heligmosomoides Polygyrus (Nematoda) in enclosed wood mouse populations. J Anim Ecol 60:805–821

    Article  Google Scholar 

  • Gregory, RD (1992) On the interpretation of host-parasite ecology: Heligmosomoides Polygyrus (Nematoda) in wild wood mouse (Apodemus sylvaticus) Populations. J Zool Lond 226:109–121

    Google Scholar 

  • Gregory RD, Keymer AE, Clarke JR (1990) Genetics, sex, and exposure: The ecology of Heligmosomoides polygyrus (Nematoda) in the wood mouse. J Anim Ecol 59:363–378

    Article  Google Scholar 

  • Gregory RD, Montgomery SSJ, Montgomery WI (1992) Population biology of Heligmosomoides polygyrus in the wood mouse. J Anim Ecol 61:749–757

    Article  Google Scholar 

  • Grenfell BT (1992) Parasitism and the dynamics of ungulate grazing systems. Amer Nat 139:907–929

    Article  Google Scholar 

  • Grenfell BT, Dietz K, Roberts MG (1995) Modelling the immuno-epidemiology of macroparasites in wildlife host populations In: Grenfell BT, Dobson AP (eds) Ecology of infectious diseases in natural populations. Cambridge Univ Press, Cambridge, pp 362–383

    Google Scholar 

  • Herbert J, Isham V (2000) Stochastic host-parasite interaction models. J Math Biol 40:343–371

    Article  PubMed  CAS  Google Scholar 

  • Hess G (1996) Disease in metapopulation models: Implications for conservation. Ecology 77:1617–1632

    Article  Google Scholar 

  • Hudson PJ, Dobson AP (1995) Macroparasites: Observed patterns. In: Grenfell BT, Dobson AP (eds) Ecology of infectious diseases in natural populations. Cambridge Univ Press, Cambridge, pp 144–176

    Google Scholar 

  • Hudson PJ, Norman R, Laurenson MK, Newborn D, Gaunt M, Jones L, Reid H, Gould E, Bowers R, Dobson AP (1995) Persistence and transmission of tickborne viruses: Ixodes ricinus and louping-ill virus in red grouse populations. Parasitology 111:S49–S58

    PubMed  Google Scholar 

  • Hudson PJ, Dobson AP, Newborn D (1998) Prevention of population cycles by parasite removal. Science 282:2256–2258

    Article  PubMed  CAS  Google Scholar 

  • Hudson PJ, Rizzoli A, Grenfell BT, Heesterbeek H, Dobson AP (eds) (2001) The ecology of wildlife diseases. Oxford Univ Press, Oxford

    Google Scholar 

  • Hughes VL, Randolph SE (2001) Testosterone depresses innate and acquired resistance to ticks in natural rodent hosts: A force for aggregated distributions of parasites. J Parasitol 87:49–54

    PubMed  CAS  Google Scholar 

  • Isham V (1995) Stochastic models of host-macroparasite interaction. Ann Appl Prob 5:720–740

    Google Scholar 

  • Jones LD, Davies CR, Steele GM, Nuttall PA (1987) A novel mode of arbovirus transmission involving a nonviraemic host. Science 237:775–777

    Article  PubMed  CAS  Google Scholar 

  • Jones LD, Gaunt M, Hails RS, Laurenson K, Hudson PJ, Reid H, Henbest P, Gould EA (1997) Transmission of louping-ill virus between infected and uninfected ticks co-feeding on muntain hares (Lepus timidus). Med Vet Entomol 11:172–176

    PubMed  CAS  Google Scholar 

  • Kaitala V, Ranta E Lindstroem J (1996) Cyclic population dynamics and random Perturbations. J Anim Ecol 65:249–251

    Article  Google Scholar 

  • Keeling MJ (1999) The effects of local spatial structure on epidemiological invasions. Proc R Soc Lond B 266:859–867

    Article  CAS  Google Scholar 

  • Keymer AE (1985) Experimental epidemiology: Nematospiroides dubius and laboratory mouse. In: Rollison D, Anderson RM (eds) Ecology and genetics of host-parasite interactions. Acad Press, London, pp 55–75

    Google Scholar 

  • Keymer AE, Hiorns RW (1986) Heligmosomoides polygyrus (Nematoda): The dynamics of primary and repeated infection in outbred mice. Proc R Soc Lon B 229:47–67

    Article  CAS  Google Scholar 

  • Kitron U, Mannelli A (1994) Modeling the ecological dynamics of tick-borne Zoonoses. In: Mather TN, Sonenshine DE (eds) Ecological dynamics of tickborne Zoonoses. Oxford Univ Press, Oxford, pp 198–239

    Google Scholar 

  • Kostizin VA (1934) Symbiose, parasitisme et èvolution (ètude mathèmatique). Hermann, Paris. Translated in: Scudo F, Ziegler J (eds) (1978) The golden age of theoretical ecology. Lecture notes in biomathematics, vol 52. SpringerVerlag, Berlin, pp 369–408

    Google Scholar 

  • Labuda M, Randolph SE (1999) Survival strategy of tick-borne encephalitis virus: Cellular basis and environmental determinants. Zentralbl Bakteriol 289:513–524

    PubMed  CAS  Google Scholar 

  • Labuda M, Jones LD, Williams T, Nuttal P (1993) Enhancement of tick borne encephalitis virus transmission by tick salivary gland extracts. Med Vet Entomol 7:193–196

    PubMed  CAS  Google Scholar 

  • Labuda M, Kozuch O, Zuffova E, Eleckova E, Hails RS, Nuttal PA (1997) Tickborne encephalitis virus transmission though ticks co-feeding on specific immune natural rodent hosts. Virology 235:138–143

    Article  PubMed  CAS  Google Scholar 

  • Lewis JW (1987) Helminth parasites of British rodents and insectivores. Mammal Rev 17:81–93

    Google Scholar 

  • LoGiudice K, Ostfeld RS, Schmidt KA, Keesing F (2003) The ecology of infectious disease: Effects of host diversity and community composition on Lyme disease risk. Proc Natl Acad Sci USA 100:567–571

    Article  PubMed  CAS  Google Scholar 

  • McCallum H, Dobson AP (1995) Detecting disease and parasite threats to endangered species and ecosystems. Trends Ecol Evol 10:190–194

    Article  Google Scholar 

  • McCurdy DG, Shutler D, Mullie A, Forbes MR (1998) Sex-biased parasitism of avian host: Relations to blood parasite taxon and mating system. Oikos 82:303–312

    Article  CAS  Google Scholar 

  • Moore SL, Wilson K (2002) Parasites as a viability cost of sexual selection in natural populations of mammals. Science 297:2015–2018

    Article  PubMed  CAS  Google Scholar 

  • Mount GA, Haile DG (1987) Computer management of area-wide management strategies for the lone star tick, Ambllyomma americanum (Acari: Ixodidae). J Med Entomol 24:523–531

    PubMed  CAS  Google Scholar 

  • Mount GA, Haile DG (1989) Computer simulation of population dynamics of the America dog tick (Acari: Ixodidae). J Med Entomol 26:60–76

    PubMed  CAS  Google Scholar 

  • Norman R, Bowers RG, Begon M, Hudson PJ (1999) Persistence of tick-borne virus in the presence of multiple host species: Tick reservoirs and parasite mediated competition. J Theor Biol 200:111–118

    Article  PubMed  CAS  Google Scholar 

  • Ostfeld RS, Keesing F (2000) Biodiversity and disease risk: The case of Lyme Disease. Cons Biol 14:722–728

    Article  Google Scholar 

  • Perkins SE, Cattadori IM, Tagliapietra V, Rizzoli A, Hudson PJ (2003) Empirical evidence for key hosts in persistence of a tick-borne disease. Int J Parasitol 33:909–917

    Article  PubMed  Google Scholar 

  • Poulin R (1996) Sexual inequalities in helminth infections: A cost of being male? Amer Nat 147:287–295

    Article  Google Scholar 

  • Pugliese A (2002) Virulence evolution in macro-parasites. In: Castillo-Chavez C, Blower S, Kirschner D, Van Den Driessche P, Yakubu A (eds) Mathematical approaches for emerging and reemerging infectious diseases: Models, methods and theory, part 2. IMA Series vol. 126, SpringerVerlag, New York, pp 193–213

    Google Scholar 

  • Pugliese A, Tonetto L (2004) Thresholds for macroparasite infections. J Math Biol 49:83–110

    Article  PubMed  Google Scholar 

  • Quinnell RJ (1992) The population dynamics of Heligmosomoides polygyrus in an enclosure population of wood mice. J Anim Ecol 61:669–679

    Article  Google Scholar 

  • Quinnell RJ, Grafen A, Woolhouse MEJ (1995) Changes in parasite aggregation with age: A discrete infection model. Parasitology 111:635–644

    Google Scholar 

  • Randolph SE (1994) Density-dependent acquired resistance in natural and unnatural hosts. Parasitology 79:141–156

    Google Scholar 

  • Randolph SE (2001) The shifting landscape of tick-borne zoonoses: Tick-borne encephalitis and Lyme borreliosis in Europe. Phil Trans R Soc Lond B 356:1045–1056

    CAS  Google Scholar 

  • Randolph SE, Rogers DJ (1997) A generic population model for the African tick Rhipicephalus appendiculatus. Parasitology 115:265–279

    Article  PubMed  Google Scholar 

  • Randolph SE, Rogers DJ (2000) Fragile transmission cycles of tick-borne encephalitis virus may be disrupted by predicted climate change. Proc R Soc Lond B 267:1741–1744

    Article  CAS  Google Scholar 

  • Randolph SE, Gern L, Nuttal PA (1996) Co-feeding ticks: Epidemiological significance for tick-borne pathogens transmission. Parasitol Today 12:472–479

    Article  PubMed  CAS  Google Scholar 

  • Randolph SE, Miklisova D, Lysy J, Rogers DJ, Labuda M (1999) Incidence from coincidence: Patterns of tick infestations in rodents facilitate transmission of tick-borne encephalitis virus. Parasitology 118:177–186

    Article  PubMed  Google Scholar 

  • Randolph SE, Green RM, Peacey MF, Rogers DJ (2000) Seasonal synchrony: The key to the tick-borne pathogen transmission. Parasitology 121:15–23

    Article  PubMed  Google Scholar 

  • Randolph SE, Chemini C, Furlanello C, Genchi C, Hails RA, Hudson PJ, Jones LD, Medley G, Norman R, Rizzoli AP, Smith G, Woolhouse MEJ (2001) The ecology of tick-borne infections in wildlife reservoirs. In: Hudson PJ, Rizzoli A, Grenfell BT, Hesterbeek H, Dobson AP (eds) The ecology of wildlife diseases. Oxford Univ Press, Oxford, pp 119–138

    Google Scholar 

  • Roberts MG, Heesterbeek JAP (1995) The dynamics of nematode infections of farmed ruminants. Parasitology 110:493–502

    PubMed  Google Scholar 

  • Roberts MG, Smith G, Grenfell BT (1995) Mathematical models for macroparasites of wildlife. In: Grenfell BT, Dobson AP (eds) Ecology of infectious diseases in natural populations. Cambridge Univ Press, Cambridge, pp 177–208

    Google Scholar 

  • Rosà R, Pugliese A (2002) Aggregation, stability and oscillations in different models for host-macroparasite interactions. Theor Pop Biol 61:319–334

    Article  Google Scholar 

  • Rosà R, Rizzoli A, Pugliese A, Genchi C (2000) Managing chamois ( Rupicapra Rupicapra) populations: A model with macroparasites infection and host dynamics. Hystrix 11:103–114

    Google Scholar 

  • Rosà R, Pugliese A, Villani A, Rizzoli A (2003a) Individual-based vs. deterministic models for macroparasites: Host cycles and extinction. Theor Pop Biol 63:295–307

    Article  Google Scholar 

  • Rosà R, Pugliese A, Norman R, Hudson PJ (2003b) Thresholds for disease persistence in models for tick-borne infections including non-viraemic transmission, extended feeding and tick aggregation. J Theor Biol 224:359–376

    Article  PubMed  Google Scholar 

  • Schalk G, Forbes MR (1997) Male biases in parasitism of mammals: Effects of study type, host age and parasite taxon. Oikos 78:67–74

    Article  Google Scholar 

  • Scott ME (1987) Regulation of mouse colony abundance by Heligmosomoides polygyrus. Parasitology 95:111–124

    PubMed  Google Scholar 

  • Scott ME (1990) An experimental and theoretical study of the dynamics of a mouse-nematode (Heligmosomoides polygyrus) interactions. Parasitology 101:75–92

    Article  PubMed  Google Scholar 

  • Skorping A, Jensen KH (2004) Disease dynamics: All caused by males? Trends Ecol Evol 19:219–220

    Article  PubMed  Google Scholar 

  • Slater AF, Keymer AE (1988) Epidemiology of Heligmosomoides polygyrus in mice: experiments on natural transmission. Parasitology 93:177–187

    Google Scholar 

  • Van Buskirk J, Ostfeld RS (1995) Controlling Lyme disease by modifying the density and species composition of tick hosts. Ecol Appl 5:1133–1140

    Google Scholar 

  • White KAJ, Grenfell BT, Hendry RJ, Lejeune O, Murray JD (1996) Effect of seasonal host reproduction on host-macroparasite dynamics. Math Biosci 137:79–99

    Article  PubMed  CAS  Google Scholar 

  • Wikel SK (1982) Immune response to arthropods and their hosts. Ann Rev Entomol 27:21–48

    Article  CAS  Google Scholar 

  • Wilson K, Bjørnstad ON, Dobson AP, Merler S, Poglayen G, Randolph SE, Read AF, Skorping A (2001) Heterogeneities in macroparasite infections: Patterns and processes. In: Hudson PJ, Rizzoli A, Grenfell BT, Heesterbeek H, Dobson AP (eds) The ecology of wildlife diseases. Oxford Univ Press, Oxford, pp 6–44

    Google Scholar 

  • Woolhouse MEJ (1992) A theoretical framework for the immunoepidemiology of helminth infection. Parasite Immunol 14:563–578

    PubMed  CAS  Google Scholar 

  • Woolhouse MEJ, Dye C, Etard JF, Smith T, Charlwood JD, Garnett GP, Hagan P, Hii JLK, Ndhlovu PD, Quinnel RJ, Watts CH, Chandiwana SK, Anderson RM (1997) Heterogeneities in the transmission of infectious agents; implications for the design of control programs. Proc Natl Acad Sci USA 94:338–342

    Article  PubMed  CAS  Google Scholar 

  • Zeman P, Benes C (2004) A tick-borne encephalitis ceiling in Central Europe has moved upwards during the last 30 years: Possible impact of global warming? Int J Med Microbiol 37:48–54

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Rosà, R., Rizzoli, A., Ferrari, N., Pugliese, A. (2006). Models for host-macroparasite interactions in micromammals. In: Morand, S., Krasnov, B.R., Poulin, R. (eds) Micromammals and Macroparasites. Springer, Tokyo. https://doi.org/10.1007/978-4-431-36025-4_17

Download citation

Publish with us

Policies and ethics