Skip to main content

Symbolic Shadowing and the Computation of Entropy for Observed Time Series

  • Conference paper
Econophysics Approaches to Large-Scale Business Data and Financial Crisis
  • 1320 Accesses

Abstract

Order, disorder and recurrence are common features observed in complex time series that can be encountered in many fields, like finance, economics, biology and physiology. These phenomena can be modelled by chaotic dynamical systems and one way to undertake a rigorous analysis is via symbolic dynamics, a mathematical-statistical technique that allows the detection of the underlying topological and metrical structures in the time series. Symbolic dynamics is a powerful tool initially developed for the investigation of discrete dynamical systems. The main idea consists in constructing a partition, that is, a finite collection of disjoint subsets whose union is the state space. By identifying each subset with a distinct symbol, we obtain sequences of symbols that correspond to each trajectory of the original system. One of the major problems in defining a “good” symbolic description of the corresponding time series is to obtain a generating partition, that is, the assignment of symbolic sequences to trajectories that is unique, up to a set of measure zero. Unfortunately, this is not a trivial task, and, moreover, for observed time series the notion of a generating partition is no longer well defined in the presence of noise. In this paper we apply symbolic shadowing, a deterministic algorithm using tessellations, in order to estimate a generating partition for a financial time series (PSI20) and consequently to compute its entropy. This algorithm allows producing partitions such that the symbolic sequences uniquely encode all periodic points up to some order. We compare these results with those obtained by considering the Pesin’s identity, that is, the metric entropy is equal to the sum of positive Lyapunov exponents. To obtain the Lyapunov exponents, we reconstruct the state space of the PSI20 data by applying an embedding process and estimate them by using the Wolf et al. algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The representatives can be chosen so that

    $${\sup }_{x\in X}\left \Vert x - {r}_{{\Phi }_{[-k,k]}\left (x\right)}\right \Vert \rightarrow 0,\ k \rightarrow \infty,$$

    where Φ [ − k, k] x is the set of all possible subsequences of length 2k + 1 and Φ is localizing, that is

    $${\sup }_{z}\mbox{ {\it diam}}\left ({\Phi }_{[-k,k]}^{-1}\left (z\right)\right) \rightarrow 0,\ k \rightarrow \infty.$$

    Following Eckmann and Ruelle [13], localizing is a sufficient condition for \(\mathcal{P}\) being a generating partition.

  2. 2.

    The algorithm can be stopped when the length of substrings reaches a certain length, or when the discrepancy is sufficiently small.

    The discrepancy is defined by

    $$\sum_{i=m+1}^{N-n}{\left \Vert {x}_{ i} - {r}_{{s}_{[i-m,i+n]}}\right \Vert }^{2}\big{/}(N - m - n).$$

References

  1. Abarbanel H (1996) Analysis of observed chaotic data. Springer, New York

    Book  MATH  Google Scholar 

  2. Anosov DV (1967) Geodesic flows and closed Riemannian manifolds with negative curvature. Proc Steklov Inst Math 90:1–235

    Google Scholar 

  3. Aziz W, Arif M (2006) Complexity analysis of stride interval time series by threshold dependent symbolic entropy. Eur J Appl Physiol 98:30–40

    Article  Google Scholar 

  4. Bolt EM, Stanford T, Lai Y-C, Zyczkowski K (2001) What symbolic dynamics do we get with a misplaced partition? On the validity of threshold crossings analysis of chaotic time-series. Physica D 154(3–4):259–286

    Article  MathSciNet  ADS  Google Scholar 

  5. Bowen R (1975) ω-Limit sets for axiom A diffeomorphisms. J Diff Eqs 18:333–339

    Article  MathSciNet  MATH  Google Scholar 

  6. Brida JG, Gómez DM, Risso WA (2009) Symbolic hierarchical analysis in currency markets: an application to contagion in currency crises. Expert Syst Appl 36:7721–7728

    Article  Google Scholar 

  7. Brock WA (1986) Distinguishing random and deterministic systems: abridged version. In: Grandmont J-M (ed) Nonlinear economic dynamics. Academic, New York, pp 168–195

    Google Scholar 

  8. Brock WA, Dechert W, Scheinkman J (1987) A test for independence based on the correlation dimension. Working paper, University of Winconsin at Madison, University of Houston, and University of Chicago

    Google Scholar 

  9. Cochrane J (1994) Shocks. Carnegie-Rochester Conf Ser Public Policy 41:295–364

    Article  Google Scholar 

  10. Cvitanovic P, Gunaratne GH, Procaccia I (1988) Topological and metric properties of Hénon-type strange attractors. Phys Rev A 38(3):1503–1520

    Article  MathSciNet  ADS  Google Scholar 

  11. Darbellay G (1998) Predictability, an information-theoretic perspective. In: Prochazka A, Uhlır J, Rayner PJW, Kingsbury NG (eds) Signal analysis and prediction. Birkhauser, Boston, pp 249–262

    Google Scholar 

  12. Dionísio A, Menezes R, Mendes DA (2006) Entropy-based independence test. Nonlinear Dyn 44(1–4):351–357

    Article  MATH  Google Scholar 

  13. Eckmann J-P, Ruelle D (1985) Ergodic theory of chaos and strange attractors. Rev Mod Phys 57:617–656

    Article  MathSciNet  ADS  Google Scholar 

  14. Eguia MC, Rabinovich MI, Abarbanel HD (2000) Information transmission and recovery in neural communications channels. Phys Rev E 62(5B):7111–7122

    Article  ADS  Google Scholar 

  15. Doyne Farmer J, Sidorowich JJ (1991) Optimal shadowing and noise reduction. Physica D 47:373–392

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Fraser AM, Swinney HL (1986) Independent coordinates for strange attractors from mutual information. Phys Rev A 33:1134–1140

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Grassberger P, Kantz H (1985) Generating partitions for the dissipative Henon map. Phys Lett A 113(5):235–238

    Article  MathSciNet  ADS  Google Scholar 

  18. Grassberger P, Procaccia I (1983) Characterization of strange attractors. Phys Rev Lett 50:346–349

    Article  MathSciNet  ADS  Google Scholar 

  19. Gu R (2008) On ergodicity of systems with the asymptotic average shadowing property. Comput Math Appl 55:1137–1141

    Article  MathSciNet  MATH  Google Scholar 

  20. Hammel SM, Yorke JA, Grebogi C (1987) Do numerical orbits of chaotic processes represent true orbits? J Complexity 3:136–145

    Article  MathSciNet  MATH  Google Scholar 

  21. Hirata Y, Judd K, Kilminster D (2004) Estimating a generating partition from observed time series: symbolic shadowing. Phys Rev E 70:016215

    Article  MathSciNet  ADS  Google Scholar 

  22. Hirata Y, Judd K (2005) Constructing dynamical systems with specified symbolic dynamics. Chaos 15:033102

    Article  MathSciNet  ADS  Google Scholar 

  23. Iseri M, Caglar H, Caglar N (2008) A model proposal for the chaotic structure of Istanbul stock exchange. Chaos Solitons Fractals 36:1392–1398

    Article  ADS  Google Scholar 

  24. Kantz H, Schreiber TH (1997) Nonlinear time series analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  25. Katok A, Hasselblat B (1999) An introduction to the modern theory of dynamical systems. Cambridge University Press, Cambridge

    Google Scholar 

  26. Kennel MB, Buhl M (2003) Estimating good discrete partitions from observed data: symbolic false nearest neighbors. Phys Rev Lett 91:084102

    Article  ADS  Google Scholar 

  27. Koscielniak P, Mazur M (2007) Chaos and the shadowing property. Topol Appl 154:2553–2557

    Article  MathSciNet  MATH  Google Scholar 

  28. Liebert W, Schuster HG (1988) Proper choice of the time delay for the analysis of chaotic time series. Phys Lett A, 142:107–111

    Article  MathSciNet  ADS  Google Scholar 

  29. Lind D, Marcus B (1995) An introduction to symbolic dynamics and coding. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  30. Mantegna RN, Stanley HE (1999) An introduction to econophysics: correlations and complexity in finance. Cambridge University Press, Cambridge

    Book  Google Scholar 

  31. Maasoumi E, Racine J (2002) Entropy and predictability of stock market returns. J Econom 107:291–312

    Article  MathSciNet  MATH  Google Scholar 

  32. Mendes DA, Sousa Ramos J (2004) Kneading theory for triangular maps. Int J Pure Appl Math 10(4):421–450

    MathSciNet  MATH  Google Scholar 

  33. Milnor J, Thurston W (1988) On iterated maps of the interval. In: Alexander J (ed) Dynamical systems, Proceedings of Special Year at the University of Maryland. Lecture Notes in Mathematics, vol 1342. Springer, Berlin, pp 465–563

    Google Scholar 

  34. Nakamura T, Small M (2006) Nonlinear dynamical system identification with dynamic noise and observational noise. Physica D 223:54–68

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Pearson DW (2001) Shadowing and prediction of dynamical systems. Math Comput Model 34:813–820

    Article  MATH  Google Scholar 

  36. Pompe B (1993) Measuring statistical dependences in a time series. J Stat Phys 73:587–610

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Serletis A, Gogas P (1997) Chaos in East European black market exchange rates. Res Econ 51:359–385

    Article  MATH  Google Scholar 

  38. Small M, Tse CK (2003) Evidence for deterministic nonlinear dynamics in financial time series data. CIFEr 2003, Hong Kong

    Google Scholar 

  39. Small M, Tse CK (2003) Determinism in financial time series. Stud Nonlinear Dyn Econom 7(3):5

    Google Scholar 

  40. Takens F (1981) Detecting strange attractors in turbulence. In: Rand D, Young L (eds) Dynamical sysytems and turbulence. Springer, Berlin, pp 366–381

    Google Scholar 

  41. Wessel N, Schwarz U, Saparin PI, Kurths J (2007) Symbolic dynamics for medical data analysis. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.7153

  42. Wolf A, Swift J, Swinney H, Vastano J (1985) Determining Lyapunov exponents from a time series. Physica D 16:285–292

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgements

Financial support from the Fundação Ciência e Tecnologia, Lisbon, is grateful acknowledged by the authors, under the contracts No PTDC/GES/73418/2006 and No PTDC/GES/70529/2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana A. Mendes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this paper

Cite this paper

Mendes, D.A., Mendes, V.M., Ferreira, N., Menezes, R. (2010). Symbolic Shadowing and the Computation of Entropy for Observed Time Series. In: Takayasu, M., Watanabe, T., Takayasu, H. (eds) Econophysics Approaches to Large-Scale Business Data and Financial Crisis. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53853-0_12

Download citation

Publish with us

Policies and ethics