Skip to main content

Mining the Himalayan Uplands Plant Database for a Conservation Baseline Using the Public GMBA Webportal*

  • Chapter
Protection of the Three Poles

Abstract

This chapter shows how a synthesis of heterogeneous biological field observation data, robust taxonomic methods, and data mining leads to up-to-date scientific information that is important for sustainability and conservation management. The core of this type of research is a database with field observations. Here we use the Himalayan Uplands Plant Database (HUP), which consists of extensive collections of botanic survey information collected by the senior author in the Himalayas and in renowned public herbaria over more than 25 years. The HUP database is primarily based on preserved herbarium specimens and presently holds more than 164,000 occurrence records of vascular plants. It contains the records of more than 2,000 collectors and observers who had either directly or indirectly contributed, or records that were derived from herbarium label information.

Consistent taxonomic information and the sound use of taxonomy is the key to success of any exercise with large amounts of heterogeneous biological collection data. Taxonomy, especially on the scales of developing consistent cross-border registries, still comprises one of the most obvious bottlenecks to our understanding of biodiversity. In the absence of consistent backbone taxonomies, physical documentation (collecting, preserving, and curating of good and representative herbarium specimens or other vouchers), and quality control must be stressed as necessary preconditions to vegetation and ecology-related studies. Although inherent synonymy rates are obviously quite variable among different taxonomic groups, there is no logical, automated, or permanent procedure that could identify or constrain synonyms. A wide range of Floras, monographs, taxonomic treatments, original publications, and databases has been consulted in HUP to identify and verify specimens, and to develop, at least internally, consistent taxonomies. Other challenges of using such a large collection are the long time span covered and the diversity and inconsistency of spatial and altitudinal information. Thus, large parts of the data are currently not covered by current georeferencing databases such as BioGeomancer or by international taxonomic databases such as ITIS (Integrated Taxonomic Information System).

The history of modern biodiversity exploration is brief—in the Himalayas, a mere 200 years—whereas dramatic ecological change and disturbance including deforestation, land degradation, melting glaciers, and increasing severity of natural hazards occurred during the periods of collection. Historic data are thus precious not only on account of the “priority principle” in biological taxonomy. To ensure the highest level of usage of such precious data, we regard the availability of the data for similar and potentially even larger exercises as critically important. Here we show that a new culture needs to develop and mature for sharing, exploiting, and improving primary biodiversity data and for taxonomic work in progress. The example of HUP is used to give a step-by-step best practice guidance to make biological data digitally available online using existing and rapidly developing data-sharing infrastructures. The information of the database columns was transferred into the Darwin Core 2 format and uploaded to the publicly accessible Global Biodiversity Information Facility (GBIF; www.gbif.org). Through GBIF it is also available using the Mountain Biodiversity Portal (MBP; www.mountain biodiversity.org), which allows to query, filter, and download GBIF data specific for mountain areas, with a horizontal (region) and vertical (elevation, climate) dimension and includes many options. In addition, a first-version XML-metadata information was created and uploaded to the National Biological Information Infrastructure (NBII) metadata clearinghouse (National Biological Information Infrastructure 2010; http://metadata.nbii.gov/clearinghouse). Thus, the HUP data are made accessible worldwide either by searching for metadata in the NBII clearinghouse database and through the authors, by searching for original biological data at GBIF, or by searching for mountain-specific information at the Global Mountain Biodiversity Assessment (GMBA) mountain biodiversity portal.

*This text exploits the field and database efforts of W. B. Dickoré, who collected, compiled, and curated the HUP data over more than 25 years.

GMBA = Global Mountain Biodiversity Assessment: the webportal is located at www.­mountainbiodiversity.org).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali S, Nasir Y, Qaiser M (eds) (1970–) Flora of (west) Pakistan, vol 1. Department of Botany, University of Karachi, and Missouri Botanical Press, Karachi and St. Louis

    Google Scholar 

  • Arzberger P, Schroeder P, Beaulieu A, Bowker G, Casey K, Laaksonen L, Moorman D, Uhlir P, Wouters P (2004) Promoting access to public research data for scientific, economic, and social development. Data Sci J 3:135–152

    Article  Google Scholar 

  • Bebber D, Carine M, Wood J, Wortley A, Harris D, Prance G, Davidse G, Paige J, Pennington T, Robson N, Scotland R (2010) Herbaria are a major frontier for species discovery. Proc Natl Acad Sci USA 107(51):22169–22171

    Article  PubMed  CAS  Google Scholar 

  • Biodiversity Information Standards (2009) Darwin Core. Biodiversity Information Standards (TDWG). http://www.tdwg.org/standards/450/. Accessed 14 July 2010

  • Biodiversity of the Hengduan Mountains Project (2010) Biodiversity of the Hengduan Mountains and adjacent areas of south-central China. http://hengduan.huh.harvard.edu/fieldnotes. Accessed 14 July 2010

  • Blöch C, Dickoré W, Samuel R, Stuessy T (2010) Molecular phylogeny of the Edelweiss (Leontopodium, Asteraceae – Gnaphalieae). Edinb J Bot 67(2):235–264

    Article  Google Scholar 

  • Böhm R, Auer I, Brunetti M, Mauger M, Nanni T, Schöner W (2001) Regional temperature variability in the European Alps: 1760–1998 from homogenized instrumental time series. Int J Climatol 21:1779–1801

    Article  Google Scholar 

  • Brach A, Song H (2006) eFloras: new directions for online floras exemplified by the flora of China project. Taxon 55(1):188–192

    Article  Google Scholar 

  • Brummitt R (1997) Taxonomy versus cladonomy, a fundamental controversy in biological systematics. Taxon 46(4):723–734

    Article  Google Scholar 

  • Brummitt R (2006) Am I a bony fish? Letter to the editor. Taxon 55(2):268–269

    Article  Google Scholar 

  • Canhos V, Souza S, Giovanni R, Canhos D (2004) Global biodiversity informatics: setting the scene for a “new world” of ecological modeling. Biodivers Inform 1:1–13

    Google Scholar 

  • Carvalho MD, Bockmann F, Amorim D, Brandão C, Vivo MD, Figueiredo JD, Britski H, Pinna MD, Menezes N, Marques F, Papavero N, Cancello E, Crisci J, McEachran J, Schelly R, Lundberg J, Gill A, Britz R, Wheeler Q, Stiassny M, Parenti L, Page L, Wheeler W, Faivovich J, Vari R, Grande L, Humphries C, DeSalle R, Ebach M, Nelson G (2007) Taxonomic impediment or impediment to taxonomy? a commentary on systematics and the cybertaxonomic-automation paradigm. Evol Biol 34:140–143

    Article  Google Scholar 

  • Chaudhri M, Qureshi R (1991) Pakistan’s endangered flora. II: a checklist of rare and seriously threatened taxa of Pakistan. Pakistan Syst 5(1–2):1–84

    Google Scholar 

  • Clayton W, Harman K, Williamson H (2006 onwards) GrassBase - The Online World Grass Flora. www.kew.org/data/grasses-db.html. Accessed 20 December 2010

  • Costello M (2009) Motivating online publication of data. BioScience 59:418–427

    Article  Google Scholar 

  • Craig E, Huettmann F (2009) Using “blackbox” algorithms such as TreeNET and Random Forests for data-mining and for finding meaningful patterns, relationships and outliers in complex ecological data: an overview, an example using Golden Eagle satellite data and an outlook for a promising future. In: Wang H-F (ed) Intelligent data analysis: developing new methodologies through pattern discovery and recovery. IGI Global, Hershey, pp 65–84

    Google Scholar 

  • Cushman S, Huettmann F (eds) (2010) Spatial complexity, informatics, and wildlife conservation. Springer, Tokyo

    Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle of life. John Murray, London

    Google Scholar 

  • Dickoré W (1991) Zonation of flora and vegetation of the Northern declivity of the Karakoram/Kunlun Mountains (SW Xinjiang China). Geo Journal 25(2/3):265–284

    Google Scholar 

  • Dickoré W (1995) Systematische Revision und chronologische Analyse der Monocotyledoneae des Karakorum (Zentralasien, West-Tibet). Flora Karakorumensis I. Angiospermae, Monocotyledoneae. Stapfia 39. Botanische Arbeitsgemeinschaft am OÖ Landesmuseum Linz, Linz

    Google Scholar 

  • Dickoré W (2001a) Flora und Vegetation der Umgebung von Chilas. In: BandiniKönig D, Hinüber Ov (eds) Materialien zur Archäologie der Nordgebiete Pakistans 4, Die Felsbildstationen Shing Nala und Gichi Nala. Zabern, Heidelberg, pp 122–127

    Google Scholar 

  • Dickoré W (2001b) Observations on some Saussurea (Compositae-Cardueae) of W. Kunlun, Karakorum and W. Himalaya. Edinb J Bot 58:15–29

    Article  Google Scholar 

  • Dickoré W, Hilger H (in press) Decalepidanthus Riedl 1963 (Boraginaceae) includes and antedates Pseudomertensia Riedl in Rechinger 1967; a synopsis of the genus. Phytotaxa

    Google Scholar 

  • Dickoré W, Kasperek G (2010) Species of Cotoneaster (Rosaceae, Maloideae) indigenous to, naturalising or commonly cultivated in Central Europe. Willdenowia 40:13–45

    Article  Google Scholar 

  • Dickoré W, Kriechbaum M (2006) Oxytropis iridum (Leguminosae), a new species from SE Tibet (Xizang, China), including phytogeographical remarks. Willdenowia 36:857–865

    Article  Google Scholar 

  • Dickoré W, Miehe G (2002) Cold spots in the highest mountains of the world – diversity patterns and gradients in the flora of the Karakorum. In: Körner C, Spehn E (eds) Mountain biodiversity: a global assessment. Parthenon, London, pp 129–147

    Google Scholar 

  • Dickoré W, Nüsser M (2000) Flora of Nanga Parbat (NW Himalaya, Pakistan) – an annotated inventory of vascular plants with remarks on vegetation dynamics. Englera 19. Botanical Garden, Berlin

    Google Scholar 

  • Dobremez J, Shakya P, Camaret S, Vigny F, Eynard-Machet R (1967–2009) Flora Himalaya database. Laboratoire d’Ecologie Alpine. www.leca.univ-savoie.fr/db/florhy/. Accessed 20 Dec 2010

  • Drew AC, Wiersma YF, Huettmann F (2010) Predictive modeling in landscape ecology. Springer, New York

    Google Scholar 

  • Eberhardt E, Dickoré W, Miehe G (2006) Vegetation of Hunza Valley: diversity, altitudinal distribution and human impact. In: Kreutzmann H (ed) Karakoram in transition. Oxford University Press, Karachi, pp 109–122

    Google Scholar 

  • eFloras (2010) Missouri Botanical Garden, St. Louis, MO & Harvard University Herbaria, Cambridge, MA. www.efloras.org. Accessed 15 Dec 2010

  • Elith J, Graham C, Anderson R, Dudík M, Ferrier S, Guisan A, Hijmans R, Huettmann F, Leathwick J, Lehmann A, Li J, Lohmann L, Loiselle B, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson A, Phillips S, Richardson K, Scachetti-Pereira R, Schapire R, Soberón J, Williams S, Wisz M, Zimmermann N (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Encyclopedia of Life (EoL). www.eol.org. Accessed 2 Feb 2011

  • Federal Geographic Data Committee (2010) Geospatial metadata. Federal Geographic Data Committee (FGDC. http://www.fgdc.gov/metadata. Accessed 14 July 2010

  • Fraser-Jenkins C (1997) Himalayan ferns: a guide to Polystichum. International Book Distributors, Dehra Dun

    Google Scholar 

  • Funk V (1993) Uses and misuses of Floras. Taxon 42(4):761–772

    Article  Google Scholar 

  • Global Biodiversity Information Facility (GBIF). www.gbif.org. Accessed 2 Feb 2011

  • Global Mountain Biodiversity Assessment (2010) Mountain Biodiversity Portal. Global Mountain Biodiversity Assessment (GMBA). http://www.mountainbiodiversity.org/. Accessed 14 July 2010

  • Global Taxonomy Initiative (GTI) (2010). www.cbd.int/gti/. Accessed 14 Dec 2010

  • Govaerts R (2001) How many species of seed plants are there? Taxon 50(4):1085–1090

    Article  Google Scholar 

  • Govaerts R (2003) How many species of seed plants are there? A response. Taxon 52(3):583–584

    Article  Google Scholar 

  • Grierson A (1964) A revision of the asters of the Himalayan area. Notes R Bot Gard Edinb 26:67–163

    Google Scholar 

  • Grierson AJC, Long DG (eds) (1983–2002) Flora of Bhutan including a record of plants from Sikkim, vol 1. Royal Botanic Garden, Edinburgh

    Google Scholar 

  • Grubov VI (ed) (1963–2007) Plants of central Asia (Plantae Asia Centralis, English translation), vol 1–14a. Science Publishers, Enfield

    Google Scholar 

  • Grubov V (1991) Plants of central Asia. Science Publishers, Enfield

    Google Scholar 

  • Guralnick R, Hill A (2009) Biodiversity informatics: automated approaches for documenting global biodiversity patterns and processes. Bioinformatics (Oxf) 25:421–428

    Article  CAS  Google Scholar 

  • Guralnick R, Wieczorek J, Beaman R, Hijmans R et al (2006) BioGeomancer: automated georeferencing to map the world’s biodiversity data. PLoS Biol 4:1908–1909

    Google Scholar 

  • Hajra P, Sharma B, Sanjappa M, Sastra A (eds) (1996–) Flora of India, vol 1. Botanical Survey of India, Calcutta

    Google Scholar 

  • Hara H, Williams L, Stearn W, Chater A (eds) (1978–1982) An enumeration of the flowering plants of Nepal, vols 1–3. Natural History Museum, London

    Google Scholar 

  • Hoagland K (1995) The taxonomic impediment and the Convention on Biodiversity. White paper of the Convention on Biodiversity, Subsidiary Body on Scientific, Technical and Technological Advice (SBSTTA)

    Google Scholar 

  • Hooker J (1875–1897) Flora of British India. L. Reeve, London

    Google Scholar 

  • Huettmann F (2010) The global need for, and appreciation of, high-quality metadata in biodiversity database work. In: Spehn EM, Koerner C (eds) Data mining for global trends in mountain biodiversity. CRC Press, Boca Raton

    Google Scholar 

  • Huss H (1978) Über Flora und Vegetation des Wakhan und Großen Pamir. In: Grancy S, Kostka R (eds) Großer Pamir, pp 168–192

    Google Scholar 

  • Integrated Taxonomic Information System (2010) Integrated Taxonomic Information System (ITIS). http://www.itis.gov/. Accessed 14 July 2010

  • International Code of Botanical Nomenclature (ICBN) (2006) Vienna Code. http://ibot.sav.sk/icbn/main.htm. Accessed 2 Feb 2011

  • IUCN (2007) Guidelines for applying the precautionary principle to biodiversity conservation and natural resource management. IUCN Council, Gland

    Google Scholar 

  • Jansen F, Dengler J (2010) Plant names in vegetation databases: a neglected source of bias. J Veg Sci 21(6):1179–1186

    Article  Google Scholar 

  • Jordon-Thaden I, Hase I, Al-Shehbaz I, Koch M (2010) Molecular phylogeny and systematics of the genus Draba (Brassicaceae) and identification of its most closely related genera. Mol Phylogenet Evol 55(2):524–540

    Article  PubMed  CAS  Google Scholar 

  • Klimeš L, Dickoré W (2005) A contribution to the vascular flora of Lower Ladakh (Jammu & Kashmir, India). Willdenowia 35:125–153

    Article  Google Scholar 

  • Körner C, Paulsen J (2010) Exploring and explaining mountain biodiversity: the role and power of geophysical information systems. In: Spehn EM, Körner C (eds) Data mining for global trends in mountain biodiversity. CRC Press, Boca Raton, pp 1–10

    Google Scholar 

  • Körner C, Donoghue M, Fabbro T, Häuser C, Nogués-Bravo D, Arroyo M, Soberon J, Speers L, Spehn E, Sun H, Tribsch A, Tykarski P, Zbinden N (2007) Creative use of mountain biodiversity databases: the Kazbegi Research Agenda of GMBA-DIVERSITAS. Mt Res Dev 27:276–281

    Article  Google Scholar 

  • Körner C, Paulsen J, Spehn E (2011) A definition of mountains and their bioclimatic belts for global comparisons of biodiversity data. Alp Bot

    Google Scholar 

  • Mayo S, Allkin R, Baker W, Blagoderov V, Brake I, Clark GR, Godfray C, Haigh A, Hand R, Harman K, Jackson M, Kilian N, Kirkup D, Kitching I, Knapp S, Lewis G, Malcolm-Tompkins P, Ev R-S, Roberts D, Scoble M, Simpson D, Smith C, Smith V, Villalba S, Walley L, Wilkin P (2008) Alpha e-taxonomy: responses from the systematics community to the biodiversity crisis. Kew Bull 63:1–16

    Article  Google Scholar 

  • Miehe G, Miehe S, Dickoré W (2002) Alpine deserts in high Asia. In: Xiaoping Y (ed) Deserts and alpine environments. Advances in geomorphology and paleoclimatology. China Ocean Press, Beijing, pp 59–79

    Google Scholar 

  • National Biological Information Infrastructure (2010) NBII Metadata Clearinghouse. National Biological Information Infrastructure (NBII). http://metadata.nbii.gov/clearinghouse/. Accessed 14 July 2010

  • Nixon K, Carpenter J, Stevenson D (2003) The PhyloCode is fatally flawed, and the Linnaean system can easily be fixed. Bot Rev 69(1):111–120

    Article  Google Scholar 

  • Nüsser M, Dickoré W (2002) A tangle in the triangle: vegetation map of the Eastern Hindukush (Chitral, Northern Pakistan). Erdkunde 56(1):37–59

    Article  Google Scholar 

  • Omer S, Qaiser M, Ali S (2001) Flora of Pakistan. In: Afzal M, Mufti SA (eds) Natural history research in Pakistan. PASTIC, Islamabad, pp 1–25

    Google Scholar 

  • Ovczinnikov P (1957–1991) Flora Tadhzikskoj SSR (flora of Tajikistan), vols 1–10. Nauka, Leningrad/St. Petersburg

    Google Scholar 

  • Pampanini R (1930) La Flora del Caracorùm. In: Spedizione Italiana De Filippi nell’Himàlaya, Caracorùm e Turchestàn Cinese (1913–1914). Bologna

    Google Scholar 

  • Pimenov M, Kljuykov E, Dickoré W, Miehe G (2000) Four Himalayan Umbelliferae new to the flora of China with critical notes on Tordyliopsis DC. and Keraymonia Farille. Willdenowia 30:361–367

    Google Scholar 

  • Press J, Shrestha K, Sutton D (2000) Annotated checklist of the flowering plants of Nepal. The Natural History Museum and Tribhuvan University, London and Kathmandu

    Google Scholar 

  • Qureshi R, Chaudhri M (1987) The endangered flora of Pakistan. A preliminary report. Pakistan Syst 3(1):32–37

    Google Scholar 

  • Rechinger K (ed) (1963–2010) Flora Iranica, vols 1–178, Akademische Druck-u, Verlagsanstalt, Graz

    Google Scholar 

  • Schlagintweit-Sakünlünski H (1876) Bericht über die Anlage des Herbariums während der Reisen nebst Erläuterungen der topographischen Angaben. Abhandlungen der Bayerischen Akademie der Wissenschaften, Mathematisch-physikalische Klasse 12(3):133–196

    Google Scholar 

  • Schmid E (1932) Pteridophyta, Gymnospermae, Angiospermae (Botanische Ergebnisse der Deutschen Zentralasien-Expedition 1927–28). Repertorium Novarum Specierum Regni Vegetabilis 31(1):27–75

    Article  Google Scholar 

  • Scotland R, Worthley A (2003) How many species of seed plants are there? Taxon 52(1):101–104

    Article  Google Scholar 

  • Scotland R, Hughes C, Bailey D, Wortley A (2003) The big machine and the much-maligned taxonomist. Syst Biodivers 1(2):139–143

    Article  Google Scholar 

  • Staudt G, Dickoré W (2001) Notes on Asiatic Fragaria species: Fragaria pentaphylla Losinsk. and Fragaria tibetica spec. nov. Bot Jahrb Syst 123:341–354

    Google Scholar 

  • Stewart R (1972) An annotated catalogue of the vascular plants of West Pakistan and Kashmir. In: Nasir E, Ali SI (eds) Flora of West Pakistan. Fakhri Press, Karachi, p 1028

    Google Scholar 

  • The Plant List (2010) A working list of all plant species. www.theplantlist.org. Accessed 2 Feb 2011

  • Thomson T (1852) Western Himalaya and Tibet; a narrative of a journey through the mountains of Northern India during the years 1847–48. Reene and Company, London

    Google Scholar 

  • Thorne R (2002) How many plant species are there? And how many are threatened with extinction? Endemic species in global biodiversity and conservation assessments. Taxon 51(3):511–512

    Article  Google Scholar 

  • Ungricht S (2004) How many plant species are there? And how many are threatened with extinction? Endemic species in global biodiversity and conservation assessments. Taxon 53(2):481–484

    Article  Google Scholar 

  • Viviroli D, Dürr H, Messerli B, Meybeck M, Weingartner R (2007) Mountains of the world, water towers for humanity: typology, mapping, and global significance. Water Resour Res 43:W07447

    Google Scholar 

  • World Checklists of Selected Plant Families (WCSP) (2010) The Board of Trustees of the Royal Botanic Gardens. www.kew.org/wcsp/. Accessed 20 Dec 2010

  • Wu Z (ed) (1980–1986) Flora Xizangica, vols 1–5. Science Press, Beijing

    Google Scholar 

  • Wu Z et al (eds) (1959–2004) Flora Reipublicae Popularis Sinicae, vols 1–80. Beijing

    Google Scholar 

  • Wu Z, Raven P, Hong D (eds) (1994–) Flora of China, vols 4–18, 22–25. Science Press and Missouri Botanical Garden Press, Beijing and St. Louis

    Google Scholar 

  • Wündisch U, Dickoré W, Miehe G (2003) Flora and vegetation of the Oytagh Valleys: phytogeography of an isolated coniferous mountain forest in arid central Asia (Western Kunlun Shan, China). Candollea 58(1):215–269

    Google Scholar 

Download references

Acknowledgments

Our sincere thanks go to the directors, curators, and members of staff of the herbaria B, BM, E, G, GAT, GOET, GZU, HAL, ISL, K, KUN, M, MSB, PRC, RAW, SZU, W, WU, and Z, for their hospitality and kind support, and to the following persons who provided identifications, data, and other substantial input to the HUP database: R. Akhter, I. Al-Shehbaz, D. Albach, B. Burrows, D.F. Chamberlain, R. Cranfill, E. Eberhardt, A. Farjon, C. Fraser-Jenkins, H. Freitag, N. Friesen, R.J. Gornall, J.P. Gruber, H. Hartmann, I.C. Hedge, L. Klimeš, M. Kriechbaum, K. Lewejohann, M. Lidén, J.Q. Liu, L. Liu, G. Miehe, S. Miehe, A. Millinger, D.F. Mowle, H.J. Noltie, M. Nüsser, N. Pearce, M. Pimenov, D. Podlech, K. Reiter, A.J. Richards, H. Schneider, H. Scholz, A. Skvortsov, A.R. Smith, J. Soják, L. Springate, T. Peer, G. Wagenitz, U. Wündisch, and T. Yamazaki. F.H. wishes to thank the kind team of authors, GBIF, NBII, ICIMOD, and GMBA (specifically Eva and Christian), for making this work happen. Thanks to all.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer

About this chapter

Cite this chapter

Nemitz, D., Huettmann, F., Spehn, E.M., Dickoré, W.B. (2012). Mining the Himalayan Uplands Plant Database for a Conservation Baseline Using the Public GMBA Webportal*. In: Huettmann, F. (eds) Protection of the Three Poles. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54006-9_6

Download citation

Publish with us

Policies and ethics