Skip to main content

Hunting the Targets of Natural Product-Inspired Compounds

  • Conference paper
  • First Online:
Chembiomolecular Science
  • 1271 Accesses

Abstract

In evolution, nature has created a variety of secondary metabolites with high chemical and structural diversity. These natural products (NPs) were evolved by nature to exert particular biological functions and to bind to different proteins as substrates and targets. Therefore, it is not surprising that a major fraction of the current drugs on the market are derived from or based on NPs and that NPs are valuable tools for the elucidation of biological processes [1]. Although NPs for decades have served as promising starting points for the discovery of new drugs and biological tools, isolation from their original sources and characterization in medium- and high-throughput approaches is severely hampered by limited amounts and insufficient purity. The total synthesis of NPs in principle offers an alternative route for getting access to pure and well-characterized compounds. In many cases, however, the complexity of NPs is prohibitive to fuel subsequent chemical biology or medicinal chemistry research. A systematic structural classification of natural products (SCONP) reveals that NPs embody only a limited number of different structural scaffolds that can be regarded as privileged [2]. SCONP therefore can serve to inspire new synthetic routes combining classical organic chemistry approaches with combinatorial chemistry methods for the synthesis of NP-inspired compound collections that can be regarded as biologically relevant and prevalidated [3, 4]. The synthesis of NP-like compound collections might provide new compounds with biological properties similar to the guiding NPs. The availability of such compounds and efficient methods for their synthesis allows establishing structure–activity correlations and the synthesis of suitable probes for isolation of target proteins and thereby lays the chemical foundation for subsequent identification of target proteins. Such information is crucial and very valuable because the lack of information about the cellular targets of most NPs hampers drug discovery: it defines a bottleneck in the quest for new drugs and in chemical biology research [5]. Furthermore, the missing information about so-called off-targets that may account for side effects complicates subsequent pharmacological and chemical research [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70(3):461–477

    Article  PubMed  CAS  Google Scholar 

  2. Koch MA, Schuffenhauer A, Scheck M, Wetzel S, Casaulta M, Odermatt A, Ertl P, Waldmann H (2005) Charting biologically relevant chemical space: a structural classification of natural products (SCONP). Proc Natl Acad Sci USA 102(48):17272–17277

    Article  PubMed  CAS  Google Scholar 

  3. Koch MA, Waldmann H (2005) Protein structure similarity clustering and natural product structure as guiding principles in drug discovery. Drug Discov Today 10(7):471–483

    Article  PubMed  CAS  Google Scholar 

  4. Breinbauer R, Vetter IR, Waldmann H (2002) From protein domains to drug candidates: natural products as guiding principles in the design and synthesis of compound libraries. Angew Chem Int Ed 41(16):2879–2890

    Article  Google Scholar 

  5. Piggott AM, Karuso P (2004) Quality, not quantity: the role of natural products and chemical proteomics in modern drug discovery. Comb Chem High Throughput Screen 7(7):607–630

    PubMed  CAS  Google Scholar 

  6. Das RK, Samanta A, Ghosh K, Zhai D, Xu W, Su D, Leong C, Young-Tae C (2011) Target identification: a challenging step in forward chemical genetics. IBC 3(1):3

    Google Scholar 

  7. Ziauddin J, Sabatini DM (2001) Microarrays of cells expressing defined cDNAs. Nature (Lond) 411(6833):107–110

    Article  CAS  Google Scholar 

  8. Zheng XS, Chan T-F, Zhou HH (2004) Genetic and genomic approaches to identify and study the targets of bioactive small molecules. Chem Biol 11(5):609–618

    Article  PubMed  CAS  Google Scholar 

  9. Wierzba K, Muroi M, Osada H (2011) Proteomics accelerating the identification of the target molecule of bioactive small molecules. Curr Opin Chem Biol 15(1):57–65

    Article  PubMed  CAS  Google Scholar 

  10. Kawatani M, Okumura H, Honda K, Kanoh N, Muroi M, Dohmae N, Takami M, Kitagawa M, Futamura Y, Imoto M, Osada H (2008) The identification of an osteoclastogenesis inhibitor through the inhibition of glyoxalase I. Proc Natl Acad Sci USA 105(33):11691–11696

    Article  PubMed  CAS  Google Scholar 

  11. Harding MW, Galat A, Uehling DE, Schreiber SL (1989) A receptor for the immunosuppressant Fk506 is a cis–transpeptidyl–prolyl isomerase. Nature (Lond) 341(6244):758–760

    Article  CAS  Google Scholar 

  12. Zhang QS, Major MB, Takanashi S, Camp ND, Nishiya N, Peters EC, Ginsberg MH, Schultz PG, Moon RT, Ding S (2007) Small-molecule synergist of the Wnt/beta-catenin signaling pathway. Proc Natl Acad Sci USA 104(18):7444–7448

    Article  PubMed  CAS  Google Scholar 

  13. Evans MJ, Saghatelian A, Sorensen EJ, Cravatt BF (2005) Target discovery in small-molecule cell-based screens by in situ proteome reactivity profiling. Nat Biotechnol 23(10):1303–1307

    Article  PubMed  CAS  Google Scholar 

  14. Wurdak H, Zhu S, Min KH, Aimone L, Lairson LL, Watson J, Chopiuk G, Demas J, Charette B, Halder R, Weerapana E, Cravatt BF, Cline HT, Peters EC, Zhang J, Walker JR, Wu C, Chang J, Tuntland T, Cho CY, Schultz PG (2010) A small molecule accelerates neuronal differentiation in the adult rat. Proc Natl Acad Sci USA 107(38):16542–16547

    Article  PubMed  CAS  Google Scholar 

  15. Ong S-E, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386

    Article  PubMed  CAS  Google Scholar 

  16. Sato S, Kwon Y, Kamisuki S, Srivastava N, Mao QA, Kawazoe Y, Uesugi M (2007) Polyproline-rod approach to isolating protein targets of bioactive small molecules: isolation of a new target of indomethacin. J Am Chem Soc 129(4):873–880

    Article  PubMed  CAS  Google Scholar 

  17. Dekker FJ, Rocks O, Vartak N, Menninger S, Hedberg C, Balamurugan R, Wetzel S, Renner S, Gerauer M, Scholermann B, Rusch M, Kramer JW, Rauh D, Coates GW, Brunsveld L, Bastiaens PIH, Waldmann H (2010) Small-molecule inhibition of APT1 affects Ras localization and signaling. Nat Chem Biol 6(6):449–456

    Article  PubMed  CAS  Google Scholar 

  18. Knoth T, Warburg K, Katzka C, Rai A, Wolf A, Brockmeyer A, Janning P, Reubold TF, Eschenburg S, Manstein DJ, Hubel K, Kaiser M, Waldmann H (2009) The Ras pathway modulator melophlin A targets dynamins. Angew Chem Int Ed Engl 48(39):7240–7245

    Article  PubMed  CAS  Google Scholar 

  19. Basu S, Ellinger B, Rizzo S, Deraeve C, Schurmann M, Preut H, Arndt HD, Waldmann H (2011) Biology-oriented synthesis of a natural-product inspired oxepane collection yields a small-molecule activator of the Wnt-pathway. Proc Natl Acad Sci USA 108(17):6805–6810

    Article  PubMed  CAS  Google Scholar 

  20. Cadigan KM, Peifer M (2009) Wnt signaling from development to disease: insights from model systems. Cold Spring Harbor Perspect Biol 1(2):a002881

    Article  Google Scholar 

  21. Brunsveld L, Kuhlmann J, Alexandrov K, Wittinghofer A, Goody RS, Waldmann H (2006) Lipidated ras and rab peptides and proteins: synthesis, structure, and function. Angew Chem Int Ed Engl 45(40):6622–6646

    Article  PubMed  CAS  Google Scholar 

  22. Rocks O, Peyker A, Kahms M, Verveer PJ, Koerner C, Lumbierres M, Kuhlmann J, Waldmann H, Wittinghofer A, Bastiaens PI (2005) An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 307(5716):1746–1752

    Article  PubMed  CAS  Google Scholar 

  23. Rocks O, Gerauer M, Vartak N, Koch S, Huang ZP, Pechlivanis M, Kuhlmann J, Brunsveld L, Chandra A, Ellinger B, Waldmann H, Bastiaens PI (2010) The palmitoylation machinery is a spatially organizing system for peripheral membrane proteins. Cell 141(3):458–471

    Article  PubMed  CAS  Google Scholar 

  24. Duncan JA, Gilman AG (1998) A cytoplasmic acyl-protein thioesterase that removes palmitate from G protein alpha subunits and p21(RAS). J Biol Chem 273(25):15830–15837

    Article  PubMed  CAS  Google Scholar 

  25. Dekker FJ, Koch MA, Waldmann H (2005) Protein structure similarity clustering (PSSC) and natural product structure as inspiration sources for drug development and chemical genomics. Curr Opin Chem Biol 9(3):232–239

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Waldmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer

About this paper

Cite this paper

Ziegler, S., Waldmann, H. (2012). Hunting the Targets of Natural Product-Inspired Compounds. In: Shibasaki, M., Iino, M., Osada, H. (eds) Chembiomolecular Science. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54038-0_23

Download citation

Publish with us

Policies and ethics