Skip to main content

Superplasticity of Composites

  • Chapter
  • First Online:
Introduction to Metal Matrix Composites
  • 1709 Accesses

Abstract

The superplasticity of metal matrix composites is introduced along with production methods for superplastic composites. Composites are strengthened by particles or fibers and usually have poor ductility, so superplastic composites (which were discovered in 1984) are definitely unusual. Superplasticity in MMCs occurs at high strain rates and at high temperatures near the solidus line of the matrix alloys. The strain rate is 100–1,000 times faster than that required to produce superplasticity in alloys. In this chapter, the mechanism of superplasticity is discussed using constitutive equations, where the shapes of the reinforcements are limited to particles or short, fine fibers. Equal channel angular pressing is introduced as one production method for superplastic MMCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosenhain, W., Ewen, D.: Intercrystalline cohesion in metals. J. Inst. Met. 8, 149–185 (1912)

    Google Scholar 

  2. Jenkins, C.H.M.: Strength of Cd–Zn and Sn–Pb alloy solder. J. Inst. Met. 40, 21–32 (1928)

    Google Scholar 

  3. Pearson, C.E.: Viscous properties of extruded eutectic alloys of Pb–Sn. J. Inst. Met. 54, 111–123 (1934)

    Google Scholar 

  4. Bochvar, A.A., Sviderskaya, Z.A.: Superplasticity in zinc–aluminum alloys. Izvest. Akad. Nauk SSSR Otdel. Tekh. Nauk. 9, 821–827 (1945)

    Google Scholar 

  5. Underwood, E.E.: A review of superplasticity and related phenomenon. J. Met. 14, 914–919 (1962)

    Google Scholar 

  6. Nieh, T.G., Henshall, C.A., Wadsworth, J.: Superplasticity at high strain rate in SiC-2124 Al composite. Scripta Metall. 18, 1405–1408 (1984)

    Article  Google Scholar 

  7. Wakai, F., Sakaguchi, S., Matsuno, Y.: Superplasticity of yttria-stabilized tetragonal ZrO2 polycrystals. Adv. Ceram. Mater. 1, 259–263 (1986)

    Google Scholar 

  8. Imai, T., Mabuchi, M., Tozawa, Y., Yamada, M.: Superplasticity in β-silicon nitride whisker-reinforced 2124 aluminum composite. J. Mater. Sci. Lett. 9, 255–257 (1990)

    Article  Google Scholar 

  9. Lin, Z.-R., Chokshi, A.H., Langdon, T.G.: An investigation of grain boundary sliding in superplasticity at high elongations. J. Mater. Sci. 23, 2712–2722 (1988)

    Article  Google Scholar 

  10. Matsuki, K., Morita, H., Yamada, M., Murakami, Y.: Relative motion of grains during superplastic flow in an Al–9Zn–1 wt.% Mg alloy. Met. Sci 11, 156–163 (1977)

    Article  Google Scholar 

  11. Matsuki, K.: Development and property of superplastic aluminum alloys. Bull. Jpn. Inst. Met. 26, 263–271 (1987)

    Article  Google Scholar 

  12. Nieh, T.G., Wadsworth, J., Sherby, O.D.: Superplasticity in Metals and Ceramics. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  13. Maruyama, K., Nakajima, H.: High Temperature Strength of Materials, p. 15. Uchida Rokakuho Publishing Co., Ltd., Tokyo (1997) (in Japanese)

    Google Scholar 

  14. Langdon, T.G.: A unified approach to grain boundary sliding in creep and superplasticity. Acta Metall. Mater. 42, 2437–2443 (1994)

    Article  Google Scholar 

  15. Mishra, R.S., Bieler, T.R., Mukherjee, A.K.: Superplasticity in powder metallurgy aluminum alloys and composites. Acta Metall. Mater. 43, 877–891 (1995)

    Article  Google Scholar 

  16. Nieh, T.G., Wadsworth, J.: High-strain-rate superplasticity in aluminum matrix composites. Mater. Sci. Eng. A147, 129–142 (1991)

    Article  Google Scholar 

  17. Nieh, T.G., Wadsworth, J., Imai, T.: A rheological view of high-strain-rate superplasticity in alloys and metal-matrix composites. Scripta Metall. Mater. 26, 703–708 (1992)

    Article  Google Scholar 

  18. Kajihara, K., Yoshizawa, Y., Sakuma, T.: The enhancement of superplastic flow in tetragonal zirconia polycrystals with SiO2-doping. Acta Metall. Mater. 43, 1235–1242 (1995)

    Article  Google Scholar 

  19. Lim, S.-W., Imai, T., Nishida, Y., Choh, T.: High strain rate superplasticity of TiC particulate reinforced magnesium alloy composite by vortex method. Scripta Metall. Mater. 32, 1713–1717 (1995)

    Article  Google Scholar 

  20. Segal, V.M., Goforth, R.E., Hartwig, K.T.: The application of equal channel angular extrusion to produce extraordinary properties in advanced metallic materials. In: Henein, H., Oki, T. (eds.) Processing Materials for Properties, pp. 971–974. Warrendale, TMS (1991)

    Google Scholar 

  21. Langdon, T.G., Furukawa, M., Nemoto, M., Horita, Z.: Using equal-channel angular pressing for refining grain size. JOM 52(4), 30–33 (2000)

    Article  Google Scholar 

  22. Lowe, T.C., Valiev, R.Z.R.Z.: Producing nanoscale microstructures through severe plastic deformation. JOM 52(4), 27–29 (2000)

    Article  Google Scholar 

  23. Tsuji, N., Shiotsuki, K., Saito, Y.: Superplasticity of ultra-fine grained Al–Mg alloy produced by accumulative roll-bonding. Mater. Trans. JIM 40, 765–771 (1999)

    Article  Google Scholar 

  24. Saito, Y., Utsunomiya, H., Tsuji, N., Sakai, T.: Novel ultra-high straining process for bulk materials – development of the accumulative roll-bonding (ARB) process. Acta Mater. 47, 579–583 (1999)

    Article  Google Scholar 

  25. Segal, V.M., Reznikov, V.I., Drobyshevskiy, A.E., Kopylov, V.I.: Plastic working of metals by simple shear. Russ. Metall. (Metally) 1(99–115) (1981)

    Google Scholar 

  26. Segal, V.M.: Materials processing by simple shear. Mater. Sci. Eng. A197, 157–164 (1995)

    Article  Google Scholar 

  27. Valiev, R.Z., Korznikov, A.V., Mulyukov, R.R.: Structure and properties of ultrafine-grained materials produced by severe plastic deformation. Mater. Sci. Eng. A168, 141–148 (1993)

    Article  Google Scholar 

  28. Nishida, Y., Arima, H., Kim, J.-C., Ando, T.: Rotary-die equal-channel angular pressing of an Al–7 mass% Si–0.35 mass% Mg alloy. Scripta Mater. 45, 261–266 (2001)

    Article  Google Scholar 

  29. Ma, A., Nishida, Y., Suzuki, K., Shigematsu, I., Saito, N.: Characteristics of plastic deformation by rotary-die equal-channel angular pressing. Scripta Mater. 52, 433–437 (2005)

    Article  Google Scholar 

  30. Nishida, Y., Shigematsu, I., Arima, H., Kim, J.-C., Ando, T.: Superplasticity of SiC whisker reinforced 7075 composite processed by rotary-die equal-channel angular pressing. J. Mater. Sci. Lett. 21, 465–468 (2002)

    Article  Google Scholar 

  31. Ma, A., Suzuki, K., Nishida, Y., Saito, N., Shigematsu, I., Takagi, M., Iwata, H., Watazu, A., Imura, T.: Impact toughness of an ultrafine-grained Al-11 mass% Si alloy processed by rotary-die equal-channel angular pressing. Acta Mater. 53, 211–220 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this chapter

Cite this chapter

Nishida, Y. (2013). Superplasticity of Composites. In: Introduction to Metal Matrix Composites. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54237-7_7

Download citation

Publish with us

Policies and ethics