Skip to main content

Smart Surfaces

  • Chapter
  • First Online:
Smart Biomaterials

Abstract

Surfaces or interfaces exist as a two-phase intermolecular force discontinuity, and thus, surfaces are normally at a high energy level. This makes surfaces very unique. Over time, the focus of research has moved to the design of materials with “smart” surface behavior. This chapter describes some general routes for the design of smart surfaces. Then, the latest research on materials with dynamically controllable surface properties is introduced. Recent biomedical applications of smart surfaces such as the adsorption control of biomolecules, tissue engineering, and bioseparation are also introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2013) Biomaterials science: an introduction to materials in medicine, 3rd edn. Academic, New York

    Google Scholar 

  2. Castner DG, Ratner BD (2002) Biomedical surface science: foundations to frontiers. Surf Sci 500:28–60. doi:10.1016/s0039-6028(01)01587-4

    Google Scholar 

  3. Lee J, Lee H, Andrade J (1995) Blood compatibility of polyethylene oxide surfaces. Prog Polym Sci 20:1043–1079. doi:10.1016/0079-6700(95)00011-4

    Google Scholar 

  4. Lyman DJ, Loo BH (1967) New synthetic membranes for dialysis. IV. a copolyether-urethane membrane system. J Biomed Mater Res 1:17–26. doi:10.1002/jbm.820010105

    Google Scholar 

  5. Bots JGF, van der Does L, Bantjes A (1986) Small diameter blood vessel prostheses from blends of polyethylene oxide and polypropylene oxide. Biomaterials 7:393–399. doi:10.1016/0142-9612(86)90011-6

    Google Scholar 

  6. Park KD, Okano T, Nojiri C, Kim SW (1988) Heparin immobilization onto segmented polyurethaneurea surfaces—effect of hydrophilic spacers. J Biomed Mater Res 22:977–992. doi:10.1002/jbm.820221103

    Google Scholar 

  7. Ratner BD, Hoffman AS, Hanson SR, Harker LA, Whiffen JD (1979) Blood-compatibility-water-content relationships for radiation-grafted hydrogels. J Polym Sci Polymer Symposia 66:363–375

    Google Scholar 

  8. Okano T, Nishiyama S, Shinohara I, Akaike T, Sakurai Y, Kataoka K, Tsuruta T (1981) Effect of hydrophilic and hydrophobic microdomains on mode of interaction between block polymer and blood platelets. J Biomed Mater Res 15:393–402. doi:10.1002/jbm.820150310

    Google Scholar 

  9. Okano T, Aoyagi T, Kataoka K, Abe K, Sakurai Y, Shimada M, Shinohara I (1986) Hydrophilic-hydrophobic microdomain surfaces having an ability to suppress platelet aggregation and their in vitro antithrombogenicity. J Biomed Mater Res 20:919–927. doi:10.1002/jbm.820200707

    Google Scholar 

  10. Kataoka K, Okano T, Sakurai Y, Nishimura T, Maeda M, Inoue S, Tsuruta T (1982) Effect of microphase separated structure of polystyrene/polyamine graft copolymer on adhering rat platelets in vitro. Biomaterials 3:237–240. doi:10.1016/0142-9612(82)90026-6

    Google Scholar 

  11. Shimada M, Unoki M, Inaba N, Tahara H, Shinohara I, Okano T, Sakurai Y, Kataoka K (1983) Effect of adsorbed protein on the adhesion behaviour of platelet to the microdomain surface of 2-hydroxyethyl methacrylate-styrene block copolymer. Eur Polymer J 19:929–933. doi:10.1016/0014-3057(83)90051-4

    Google Scholar 

  12. Ishihara K, Aragaki R, Ueda T, Watenabe A, Nakabayashi N (1990) Reduced thrombogenicity of polymers having phospholipid polar groups. J Biomed Mater Res 24:1069–1077. doi:10.1002/jbm.820240809

    Google Scholar 

  13. Ishihara K, Nomura H, Mihara T, Kurita K, Iwasaki Y, Nakabayashi N (1998) Why do phospholipid polymers reduce protein adsorption? J Biomed Mater Res 39:323–330. doi:10.1002/(sici)1097-4636(199802)39:2<323:aid-jbm21>3.0.co;2-c

    Google Scholar 

  14. Jiang S, Cao Z (2010) Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater 22:920–932. doi:10.1002/adma.200901407

    Google Scholar 

  15. Heskins M, Guillet JE (1968) Solution properties of poly(N-isopropylacrylamide). J Macromol Sci Part A Chem 2:1441–1455. doi:10.1080/10601326808051910

    Google Scholar 

  16. Okano T, Yamada N, Sakai H, Sakurai Y (1993) A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). J Biomed Mater Res 27:1243–1251. doi:10.1002/jbm.820271005

    Google Scholar 

  17. Nonaka T, Ogata T, Kurihara S (1994) Preparation of poly(vinyl alcohol)-graft-N-isopropylacrylamide copolymer membranes and permeation of solutes through the membranes. J Appl Polym Sci 52:951–957. doi:10.1002/app.1994.070520713

    Google Scholar 

  18. Gewehr M, Nakamura K, Ise N, Kitano H (1992) Gel permeation chromatography using porous glass beads modified with temperature-responsive polymers. Die Makromol Chemie 193:249–256. doi:10.1002/macp.1992.021930123

    Google Scholar 

  19. Barbey R, Lavanant L, Paripovic D, Schüwer N, Sugnaux C, Tugulu S, Klok H-A (2009) Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev 109:5437–5527. doi:10.1021/cr900045a

    Google Scholar 

  20. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1170. doi:10.1021/cr0300789

    Google Scholar 

  21. Pease RF, Chou SY (2008) Lithography and other patterning techniques for future electronics. Proc IEEE 96:248–270. doi:10.1109/jproc.2007.911853

    Google Scholar 

  22. Fleer GJ, Stuart MAC, Scheutjens MHM, Cosgrove T, Vincent B (1993) Polymers at interfaces. Chapman & Hall, London

    Google Scholar 

  23. Matyjaszewski K, Xia J (2001) Atom transfer radical polymerization. Chem Rev 101:2921–2990. doi:10.1021/cr940534g

    Google Scholar 

  24. Feil H, Bae YH, Feijen J, Kim SW (1993) Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers. Macromolecules 26:2496–2500. doi:10.1021/ma00062a016

    Google Scholar 

  25. Idota N, Ebara M, Kotsuchibashi Y, Narain R, Aoyagi T (2012) Novel temperature-responsive polymer brushes with carbohydrate residues facilitate selective adhesion and collection of hepatocytes. Sci Technol Adv Mat 13:064206

    Google Scholar 

  26. Xu C, Wu T, Mei Y, Drain CM, Batteas JD, Beers KL (2005) Synthesis and characterization of tapered copolymer brushes via surface-initiated atom transfer radical copolymerization. Langmuir 21:11136–11140. doi:10.1021/la051853d

    Google Scholar 

  27. Xu C, Barnes SE, Wu T, Fischer DA, DeLongchamp DM, Batteas JD, Beers KL (2006) Solution and surface composition gradients via microfluidic confinement: fabrication of a statistical-copolymer-brush composition gradient. Adv Mater 18:1427–1430. doi:10.1002/adma.200502341

    Google Scholar 

  28. Tomlinson MR, Genzer J (2008) Formation and properties of multivariant assemblies of surface-tethered diblock and triblock copolymers. Polymer 49:4837–4845. doi:10.1016/j.polymer.2008.08.048

    Google Scholar 

  29. Wang XJ, Bohn PW (2007) Spatiotemporally controlled formation of two-component counter propagating lateral graft density gradients of mixed polymer brushes on planar Au surfaces. Adv Mater 19:515–520. doi:10.1002/adma.200601516

    Google Scholar 

  30. Zhao B (2003) Synthesis of binary mixed homopolymer brushes by combining atom transfer radical polymerization and nitroxide-mediated radical polymerization. Polymer 44:4079–4083. doi:10.1016/s0032-3861(03)00322-7

    Google Scholar 

  31. Minko S, Patil S, Datsyuk V, Simon F, Eichhorn K-J, Motornov M, Usov D, Tokarev I, Stamm M (2002) Synthesis of adaptive polymer brushes via “grafting to” approach from melt. Langmuir 18:289–296. doi:10.1021/la015637q

    Google Scholar 

  32. Zhao B, He T (2003) Synthesis of well-defined mixed poly(methyl methacrylate)/polystyrene brushes from an asymmetric difunctional initiator-terminated self-assembled monolayer. Macromolecules 36:8599–8602. doi:10.1021/ma035285p

    Google Scholar 

  33. Luzinov I, Minko S, Tsukruk VV (2004) Adaptive and responsive surfaces through controlled reorganization of interfacial polymer layers. Prog Polym Sci 29:635–698. doi:10.1016/j.progpolymsci.2004.03.001

    Google Scholar 

  34. Gao C, Yan D (2004) Hyperbranched polymers: from synthesis to applications. Prog Polym Sci 29:183–275. doi:10.1016/j.progpolymsci.2003.12.002

    Google Scholar 

  35. Bergbreiter DE, Kippenberger AM (2006) Hyperbranched surface graft polymerizations. Adv Polym Sci 198:1–49. doi:10.1007/12_059

    Google Scholar 

  36. Mori H, Müller AHE (2003) Hyperbranched (meth)acrylates in solution, melt, and grafted from surfaces. Top Curr Chem 228:1–37. doi:10.1007/b11004

    Google Scholar 

  37. Kleinfeld ER, Ferguson GS (1996) Healing of defects in the stepwise formation of polymer/silicate multilayer films. Chem Mater 8:1575–1578. doi:10.1021/cm960073a

    Google Scholar 

  38. Lee PH, Sawan SP, Modrusan Z, Arnold LJ, Reynolds MA (2002) An efficient binding chemistry for glass polynucleotide microarrays. Bioconjug Chem 13:97–103. doi:10.1021/bc015523q

    Google Scholar 

  39. Yu WH, Kang ET, Neoh KG (2004) Controlled grafting of well-defined epoxide polymers on hydrogen-terminated silicon substrates by surface-initiated ATRP at ambient temperature. Langmuir 20:8294–8300. doi:10.1021/la036089e

    Google Scholar 

  40. Loveless DM, Abu-Lail NI, Kaholek M, Zauscher S, Craig SL (2006) Reversibly cross-linked surface-grafted polymer brushes. Angew Chem Int Ed 45:7812–7814. doi:10.1002/anie.200602508

    Google Scholar 

  41. Tugulu S, Klok H-A (2008) Stability and nonfouling properties of poly(poly(ethylene glycol) methacrylate) brushes under cell culture conditions. Biomacromolecules 9:906–912. doi:10.1021/bm701293g

    Google Scholar 

  42. Kikuchi A, Okano T (2002) Intelligent thermoresponsive polymeric stationary phases for aqueous chromatography of biological compounds. Prog Polym Sci 27:1165–1193. doi:10.1016/s0079-6700(02)00013-8

    Google Scholar 

  43. Wandera D, Wickramasinghe SR, Husson SM (2010) Stimuli-responsive membranes. J Membr Sci 357:6–35. doi:10.1016/j.memsci.2010.03.046

    Google Scholar 

  44. Beebe DJ, Mensing GA, Walker GM (2002) Physics andapplications of microfluidics in biology. Annu Rev Biomed Eng 4:261–286. doi:10.1146/annurev.bioeng.4.112601.125916

    Google Scholar 

  45. Sagiv J (1980) Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. J Am Chem Soc 102:92–98. doi:10.1021/ja00521a016

    Google Scholar 

  46. Hozumi A, Ushiyama K, Sugimura H, Takai O (1999) Fluoroalkylsilane monolayers formed by chemical vapor surface modification on hydroxylated oxide surfaces. Langmuir 15:7600–7604. doi:10.1021/la9809067

    Google Scholar 

  47. Xu FJ, Yuan ZL, Kang ET, Neoh KG (2004) Branched fluoropolymer-Si hybrids via surface-initiated ATRP of pentafluorostyrene on hydrogen-terminated Si(100) surfaces. Langmuir 20:8200–8208. doi:10.1021/la048706k

    Google Scholar 

  48. Okusa H, Kurihara K, Kunitake T (1994) Chemical modification of molecularly smooth mica surface and protein attachment. Langmuir 10:3577–3581. doi:10.1021/la00022a034

    Google Scholar 

  49. Schreiber F (2000) Structure and growth of self-assembling monolayers. Prog Surf Sci 65:151–257. doi:10.1016/s0079-6816(00)00024-1

    Google Scholar 

  50. Carlmark A, Larsson E, Malmström E (2012) Grafting of cellulose by ring-opening polymerisation—A review. Eur Polymer J 48:1646–1659. doi:10.1016/j.eurpolymj.2012.06.013

    Google Scholar 

  51. Coiai S, Passaglia E, Ciardelli F (2006) Gradient density grafted polymers on ground tire rubber particles by atom transfer radical polymerization. Macromol Chem Phys 207:2289–2298. doi:10.1002/macp.200600376

    Google Scholar 

  52. Matsukuma D, Yamamoto K, Aoyagi T (2006) Stimuli-responsive properties of N-isopropylacrylamide-based ultrathin hydrogel films prepared by photo-cross-linking. Langmuir 22:5911–5915. doi:10.1021/la060438y

    Google Scholar 

  53. Zasadzinski J, Viswanathan R, Madsen L, Garnaes J, Schwartz D (1994) Langmuir-blodgett films. Science 263:1726–1733. doi:10.1126/science.8134836

    Google Scholar 

  54. Ariga K, Hill JP, Ji Q (2007) Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys Chem Chem Phys 9:2319. doi:10.1039/b700410a

    Google Scholar 

  55. Yamamoto K, Matsukuma D, Nanasetani K, Aoyagi T (2008) Effective surface modification by stimuli-responsive polymers onto the magnetite nanoparticles by layer-by-layer method. Appl Surf Sci 255:384–387. doi:10.1016/j.apsusc.2008.06.065

    Google Scholar 

  56. Ionov L, Zdyrko B, Sidorenko A, Minko S, Klep V, Luzinov I, Stamm M (2004) Gradient polymer layers by “grafting to” approach. Macromol Rapid Commun 25:360–365. doi:10.1002/marc.200300216

    Google Scholar 

  57. Yakushiji T, Sakai K, Kikuchi A, Aoyagi T, Sakurai Y, Okano T (1998) Graft architectural effects on thermoresponsive wettability changes of poly(N-isopropylacrylamide)-modified surfaces. Langmuir 14:4657–4662. doi:10.1021/la980090+

    Google Scholar 

  58. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40:2004–2021. doi:10.1002/1521-3773(20010601)40:11<2004:aid-anie2004>3.0.co;2-5

    Google Scholar 

  59. Rühe J, Knoll W (2002) Functional polymer brushes. J Macromol Sci Part C Polym Rev 42:91–138. doi:10.1081/mc-120003096

    Google Scholar 

  60. Asatekin A, Barr MC, Baxamusa SH, Lau KKS, Tenhaeff W, Xu J, Gleason KK (2010) Designing polymer surfaces via vapor deposition. Mater Today 13:26–33. doi:10.1016/s1369-7021(10)70081-x

    Google Scholar 

  61. Wang J-S, Matyjaszewski K (1995) Controlled/“living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J Am Chem Soc 117:5614–5615. doi:10.1021/ja00125a035

    Google Scholar 

  62. Sedjo RA, Mirous BK, Brittain WJ (2000) Synthesis of polystyrene-block-poly(methyl methacrylate) brushes by reverse atom transfer radical polymerization. Macromolecules 33:1492–1493. doi:10.1021/ma991549p

    Google Scholar 

  63. Matyjaszewski K, Dong H, Jakubowski W, Pietrasik J, Kusumo A (2007) Grafting from surfaces for “everyone”: ARGET ATRP in the presence of air. Langmuir 23:4528–4531. doi:10.1021/la063402e

    Google Scholar 

  64. Hawker CJ, Bosman AW, Harth E (2001) New polymer synthesis by nitroxide mediated living radical polymerizations. Chem Rev 101:3661–3688. doi:10.1021/cr990119u

    Google Scholar 

  65. Husseman M, Malmström EE, McNamara M, Mate M, Mecerreyes D, Benoit DG, Hedrick JL, Mansky P, Huang E, Russell TP, Hawker CJ (1999) Controlled synthesis of polymer brushes by “living” free radical polymerization techniques. Macromolecules 32:1424–1431. doi:10.1021/ma981290v

    Google Scholar 

  66. Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TPT, Mayadunne RTA, Meijs GF, Moad CL, Moad G, Rizzardo E, Thang SH (1998) Living free-Radical polymerization by reversible addition−fragmentation chain transfer: the RAFT process. Macromolecules 31:5559–5562. doi:10.1021/ma9804951

    Google Scholar 

  67. Coote ML (2004) Ab initio study of the addition-fragmentation equilibrium in RAFT polymerization: when is polymerization retarded? Macromolecules 37:5023–5031. doi:10.1021/ma049444w

    Google Scholar 

  68. Zhao PS (2006) Synthesis of well-defined homopolymer and diblock copolymer grafted onto silica particles by Z-supported RAFT polymerization. Macromolecules 39:8603–8608. doi:10.1021/ma061586y

    Google Scholar 

  69. Otsu T, Yoshida M (1982) Role of initiator-transfer agent-terminator (iniferter) in radical polymerizations: polymer design by organic disulfides as iniferters. Die Makromolekulare Chemie Rapid Commun 3:127–132. doi:10.1002/marc.1982.030030208

    Google Scholar 

  70. Otsu T, Matsumoto A (1998) Controlled synthesis of polymers using the iniferter technique: developments in living radical polymerization. Adv Polym Sci 136:75–137. doi:10.1007/3-540-69682-2_3

    Google Scholar 

  71. Nakayama Y, Matsuda T (1996) Surface macromolecular architectural designs using photo-graft copolymerization based on photochemistry of benzyl N, N-diethyldithiocarbamate. Macromolecules 29:8622–8630. doi:10.1021/ma9606014

    Google Scholar 

  72. Bloomstein TM, Marchant MF, Deneault S, Hardy DE, Rothschild M (2006) 22-nm immersion interference lithography. Opt Express 14:6434. doi:10.1364/oe.14.006434

    Google Scholar 

  73. Srinivasan R, Braren B (1989) Ultraviolet laser ablation of organic polymers. Chem Rev 89:1303–1316. doi:10.1021/cr00096a003

    Google Scholar 

  74. Akiyama Y, Kikuchi A, Yamato M, Okano T (2004) Ultrathin poly(N-isopropylacrylamide) grafted layer on polystyrene surfaces for cell adhesion/detachment control. Langmuir 20:5506–5511. doi:10.1021/la036139f

    Google Scholar 

  75. Altissimo M (2010) E-beam lithography for micro-/nanofabrication. Biomicrofluidics 4:026503. doi:10.1063/1.3437589

    Google Scholar 

  76. Idota N, Tsukahara T, Sato K, Okano T, Kitamori T (2009) The use of electron beam lithographic graft-polymerization on thermoresponsive polymers for regulating the directionality of cell attachment and detachment. Biomaterials 30:2095–2101. doi:10.1016/j.biomaterials.2008.12.058

    Google Scholar 

  77. Ginger DS, Zhang H, Mirkin CA (2004) The evolution of dip-pen nanolithography. Angew Chem Int Ed 43:30–45. doi:10.1002/anie.200300608

    Google Scholar 

  78. Bullen D, Chung S-W, Wang X, Zou J, Mirkin CA, Liu C (2004) Parallel dip-pen nanolithography with arrays of individually addressable cantilevers. Appl Phys Lett 84:789. doi:10.1063/1.1644317

    Google Scholar 

  79. Xia Y, Whitesides GM (1997) Extending microcontact printing as a microlithographic technique. Langmuir 13:2059–2067. doi:10.1021/la960936e

    Google Scholar 

  80. Liu J, Cai B, Zhu J, Ding G, Zhao X, Yang C, Chen D (2004) Process research of high aspect ratio microstructure using SU-8 resist. Microsyst Technol 10:265–268. doi:10.1007/s00542-002-0242-2

    Google Scholar 

  81. Cappella B, Dietler G (1999) Force-distance curves by atomic force microscopy. Surf Sci Rep 34:1–104. doi:10.1016/s0167-5729(99)00003-5

    Google Scholar 

  82. Kidoaki S, Ohya S, Nakayama Y, Matsuda T (2001) Thermoresponsive structural change of a poly(N-isopropylacrylamide) graft layer measured with an atomic force microscope. Langmuir 17:2402–2407. doi:10.1021/la001522v

    Google Scholar 

  83. Danilatos GD (1988) Foundations of environmental scanning electron microscopy. Adv Electron Electron Phys 71:109–250. doi:10.1016/s0065-2539(08)60902-6

    Google Scholar 

  84. Seah MP (1980) The quantitative analysis of surfaces by XPS: a review. Surf Interface Anal 2:222–239. doi:10.1002/sia.740020607

    Google Scholar 

  85. Belu AM, Graham DJ, Castner DG (2003) Time-of-flight secondary ion mass spectrometry: techniques and applications for the characterization of biomaterial surfaces. Biomaterials 24:3635–3653. doi:10.1016/s0142-9612(03)00159-5

    Google Scholar 

  86. Felton MJ (2003) Product review: on the surface with auger electron spectroscopy. Anal Chem 75(269):271-A. doi:10.1021/ac031343t

  87. Watts B, Ade H (2012) NEXAFS imaging of synthetic organic materials. Mater Today 15:148–157. doi:10.1016/s1369-7021(12)70068-8

    Google Scholar 

  88. Nagase K, Kobayashi J, Kikuchi A, Akiyama Y, Kanazawa H, Okano T (2008) Effects of graft densities and chain lengths on separation of bioactive compounds by nanolayered thermoresponsive polymer brush surfaces. Langmuir 24:511–517. doi:10.1021/la701839s

    Google Scholar 

  89. Idota N, Nagase K, Tanaka K, Okano T, Annaka M (2010) Stereoregulation of thermoresponsive polymer brushes by surface-initiated living radical polymerization and the effect of tacticity on surface wettability. Langmuir 26:17781–17784. doi:10.1021/la1024229

    Google Scholar 

  90. Tsujii Y, Ohno K, Yamamoto S, Goto A, Fukuda T (2006) Structure and properties of high-density polymer brushes prepared by surface-initiated living radical polymerization. Adv Polym Sci 197:1–45. doi:10.1007/12_063

    Google Scholar 

  91. Kim J-B, Huang W, Miller MD, Baker GL, Bruening ML (2003) Kinetics of surface-initiated atom transfer radical polymerization. J Polym Sci Part A Polym Chem 41:386–394. doi:10.1002/pola.10568

    Google Scholar 

  92. Burkert S, Bittrich E, Kuntzsch M, Müller M, Eichhorn K-J, Bellmann C, Uhlmann P, Stamm M (2010) Protein resistance of PNIPAAm brushes: application to switchable protein adsorption. Langmuir 26:1786–1795. doi:10.1021/la902505q

    Google Scholar 

  93. Kooij ES, Sui X, Hempenius MA, Zandvliet HJW, Vancso GJ (2012) Probing the thermal collapse of poly(N-isopropylacrylamide) grafts by quantitative in situ ellipsometry. J Phys Chem B 116:9261–9268. doi:10.1021/jp304364m

    Google Scholar 

  94. Proll G, Markovic G, Steinle L, Gauglitz G (2009) Reflectometric interference spectroscopy. Methods Mol Biol 503:167–178. doi:10.1007/978-1-60327-567-5_8

    Google Scholar 

  95. Biesalski M, Rühe J (2002) Scaling laws for the swelling of neutral and charged polymer brushes in good solvents. Macromolecules 35:499–507. doi:10.1021/ma001776n

    Google Scholar 

  96. Idota N, Tsukahara T, Ebara M, Aoyagi T in preparation

    Google Scholar 

  97. Takahashi H, Nakayama M, Yamato M, Okano T (2010) Controlled chain length and graft density of thermoresponsive polymer brushes for optimizing cell sheet harvest. Biomacromolecules 11:1991–1999. doi:10.1021/bm100342e

    Google Scholar 

  98. Mori S, Okamoto H (1980) A unified theory of determining the electrophoretic velocity of mineral particles in the rectangular micro-electrophoresis cell. Fusen 27:117–126

    Google Scholar 

  99. Good RJ (1992) Contact angle, wetting, and adhesion: a critical review. J Adhes Sci Technol 6:1269–1302. doi:10.1163/156856192x00629

    Google Scholar 

  100. Kikuchi A, Okano T (2005) Nanostructured designs of biomedical materials: applications of cell sheet engineering to functional regenerative tissues and organs. J Controlled Release 101:69–84. doi:10.1016/j.jconrel.2004.08.026

    Google Scholar 

  101. Idota N, Kikuchi A, Kobayashi J, Akiyama Y, Sakai K, Okano T (2006) Thermal modulated interaction of aqueous steroids using polymer-grafted capillaries. Langmuir 22:425–430. doi:10.1021/la051968h

    Google Scholar 

  102. Idota N, Kikuchi A, Kobayashi J, Sakai K, Okano T (2012) Modulation of graft architectures for enhancing hydrophobic interaction of biomolecules with thermoresponsive polymer-grafted surfaces. Colloids Surf B 99:95–101. doi:10.1016/j.colsurfb.2011.10.033

    Google Scholar 

  103. Tsuda Y, Kikuchi A, Yamato M, Sakurai Y, Umezu M, Okano T (2004) Control of cell adhesion and detachment using temperature and thermoresponsive copolymer grafted culture surfaces. J Biomed Mater Res 69A:70–78. doi:10.1002/jbm.a.20114

    Google Scholar 

  104. Lutz J-F (2011) Thermo-switchable materials prepared using the OEGMA-platform. Adv Mater 23:2237–2243. doi:10.1002/adma.201100597

    Google Scholar 

  105. Lim HS, Lee WH, Lee SG, Lee D, Jeon S, Cho K (2010) Effect of nanostructure on the surface dipole moment of photoreversibly tunable superhydrophobic surfaces. Chem Commun 46:4336. doi:10.1039/c0cc00323a

    Google Scholar 

  106. Tauk L, Schröder AP, Decher G, Giuseppone N (2009) Hierarchical functional gradients of pH-responsive self-assembled monolayers using dynamic covalent chemistry on surfaces. Nat Chem 1:649–656. doi:10.1038/nchem.400

    Google Scholar 

  107. Qing G, Wang X, Fuchs H, Sun T (2009) Nucleotide-responsive wettability on a smart polymer surface. J Am Chem Soc 131:8370–8371. doi:10.1021/ja9028632

    Google Scholar 

  108. Xia F, Feng L, Wang S, Sun T, Song W, Jiang W, Jiang L (2006) Dual-responsive surfaces that switch between superhydrophilicity and superhydrophobicity. Adv Mater 18:432–436. doi:10.1002/adma.200501772

    Google Scholar 

  109. Yuan W, Jiang G, Wang J, Wang G, Song Y, Jiang L (2006) Temperature/light dual-responsive surface with tunable wettability created by modification with an azobenzene-containing copolymer. Macromolecules 39:1300–1303. doi:10.1021/ma051989i

    Google Scholar 

  110. Sun T, Wang G, Feng L, Liu B, Ma Y, Jiang L, Zhu D (2004) Reversible switching between superhydrophilicity and superhydrophobicity. Angew Chem Int Ed 43:357–360. doi:10.1002/anie.200352565

    Google Scholar 

  111. Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1–8. doi:10.1007/s004250050096

    Google Scholar 

  112. Annaka M, Yahiro C, Nagase K, Kikuchi A, Okano T (2007) Real-time observation of coil-to-globule transition in thermosensitive poly(N-isopropylacrylamide) brushes by quartz crystal microbalance. Polymer 48:5713–5720. doi:10.1016/j.polymer.2007.06.067

    Google Scholar 

  113. Rodahl M, Kasemo B (1996) A simple setup to simultaneously measure the resonant frequency and the absolute dissipation factor of a quartz crystal microbalance. Rev Sci Instrum 67:3238–3241. doi:http://dx.doi.org/10.1063/1.1147494

  114. Sanjuan S, Perrin P, Pantoustier N, Tran Y (2007) Synthesis and swelling behavior of pH-responsive polybase brushes. Langmuir 23:5769–5778. doi:10.1021/la063450z

    Google Scholar 

  115. Plunkett KN, Zhu X, Moore JS, Leckband DE (2006) PNIPAM chain collapse depends on the molecular weight and grafting density. Langmuir 22:4259–4266. doi:10.1021/la0531502

    Google Scholar 

  116. Tokareva I, Minko S, Fendler JH, Hutter E (2004) Nanosensors based on responsive polymer brushes and gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy. J Am Chem Soc 126:15950–15951. doi:10.1021/ja044575y

    Google Scholar 

  117. Zhou F, Shu W, Welland ME, Huck WTS (2006) Highly reversible and multi-stage cantilever actuation driven by polyelectrolyte brushes. J Am Chem Soc 128:5326–5327. doi:10.1021/ja060649p

    Google Scholar 

  118. Leckband D (1995) The surface force apparatus—a tool for probing molecular protein interactions. Nature 376:617–618. doi:10.1038/376617a0

    Google Scholar 

  119. Kurihara K, Kunitake T, Higashi N, Niwa M (1992) Surface forces between monolayers of anchored poly(methacrylic acid). Langmuir 8:2087–2089. doi:10.1021/la00045a003

    Google Scholar 

  120. Amiri Naini C, Franzka S, Frost S, Ulbricht M, Hartmann N (2011) Probing the intrinsic switching kinetics of ultrathin thermoresponsive polymer brushes. Angew Chem Int Ed 50:4513–4516. doi:10.1002/anie.201100140

    Google Scholar 

  121. Hln Gehan, Fillaud L, Chehimi MM, Aubard J, Hohenau A, Felidj N, Mangeney C (2010) Thermo-induced electromagnetic coupling in gold/polymer hybrid plasmonic structures probed by surface-enhanced Raman scattering. ACS Nano 4:6491–6500. doi:10.1021/nn101451q

    Google Scholar 

  122. Chen H, Yuan L, Song W, Wu Z, Li D (2008) Biocompatible polymer materials: role of protein–surface interactions. Prog Polym Sci 33:1059–1087. doi:10.1016/j.progpolymsci.2008.07.006

    Google Scholar 

  123. Norde W, Haynes CA (1995) Reversibility and the mechanism of protein adsorption. In: Proteins at interfaces II: fundamentals and applications. ACS symposium series. American Chemical Society, Washington, DC

    Google Scholar 

  124. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493. doi:10.1021/cr068107d

    Google Scholar 

  125. Cooper MA, Singleton VT (2007) A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions. J Mol Recognit 20:154–184. doi:10.1002/jmr.826

    Google Scholar 

  126. Yu Q, Zhang Y, Chen H, Wu Z, Huang H, Cheng C (2010) Protein adsorption on poly(N-isopropylacrylamide)-modified silicon surfaces: effects of grafted layer thickness and protein size. Colloids Surf B 76:468–474. doi:10.1016/j.colsurfb.2009.12.006

    Google Scholar 

  127. Xue C, Yonet-Tanyeri N, Brouette N, Sferrazza M, Braun PV, Leckband DE (2011) Protein adsorption on poly(N-isopropylacrylamide) brushes: dependence on grafting density and chain collapse. Langmuir 27:8810–8818. doi:10.1021/la2001909

    Google Scholar 

  128. Kitano H, Kondo T, Suzuki H, Ohno K (2010) Temperature-responsive polymer-brush constructed on a glass substrate by atom transfer radical polymerization. J Colloid Interface Sci 345:325–331. doi:10.1016/j.jcis.2009.10.004

    Google Scholar 

  129. Zareie HM, Boyer C, Bulmus V, Nateghi E, Davis TP (2008) Temperature-responsive self-assembled monolayers of oligo(ethylene glycol): control of biomolecular recognition. ACS Nano 2:757–765. doi:10.1021/nn800076h

    Google Scholar 

  130. Hyun J, Lee W-K, Nath N, Chilkoti A, Zauscher S (2004) Capture and release of proteins on the nanoscale by stimuli-responsive elastin-like polypeptide “switches”. J Am Chem Soc 126:7330–7335. doi:10.1021/ja049721e

    Google Scholar 

  131. Liu Y, Mu L, Liu B, Zhang S, Yang P, Kong J (2004) Controlled protein assembly on a switchable surface. Chem Commun 1194. doi:10.1039/b400776j

  132. Pearson D, Downard AJ, Muscroft-Taylor A, Abell AD (2007) Reversible photoregulation of binding of α-chymotrypsin to a gold surface. J Am Chem Soc 129:14862–14863. doi:10.1021/ja0766674

    Google Scholar 

  133. Glinel K, Thebault P, Humblot V, Pradier CM, Jouenne T (2012) Antibacterial surfaces developed from bio-inspired approaches. Acta Biomater 8:1670–1684. doi:10.1016/j.actbio.2012.01.011

    Google Scholar 

  134. Harden VP, Harris JO (1953) The isoelectric point of bacterial cells. J Bacteriol 65:198–202

    Google Scholar 

  135. Tiller JC, Liao CJ, Lewis K, Klibanov AM (2001) Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci 98:5981–5985. doi:10.1073/pnas.111143098

    Google Scholar 

  136. Lee H-S, Eckmann DM, Lee D, Hickok NJ, Composto RJ (2011) Symmetric pH-dependent swelling and antibacterial properties of chitosan brushes. Langmuir 27:12458–12465. doi:10.1021/la202616u

    Google Scholar 

  137. Mi L, Bernards MT, Cheng G, Yu Q, Jiang S (2010) pH responsive properties of non-fouling mixed-charge polymer brushes based on quaternary amine and carboxylic acid monomers. Biomaterials 31:2919–2925. doi:10.1016/j.biomaterials.2009.12.038

    Google Scholar 

  138. Cao Z, Mi L, Mendiola J, Ella-Menye J-R, Zhang L, Xue H, Jiang S (2012) Reversibly switching the function of a surface between attacking and defending against bacteria. Angew Chem Int Ed 51:2602–2605. doi:10.1002/anie.201106466

    Google Scholar 

  139. Laloyaux X, Fautré E, Blin T, Purohit V, Leprince J, Jouenne T, Jonas AM, Glinel K (2010) Temperature-responsive polymer brushes switching from bactericidal to cell-repellent. Adv Mater 22:5024–5028. doi:10.1002/adma.201002538

    Google Scholar 

  140. Okano T, Yamada N, Okuhara M, Sakai H, Sakurai Y (1995) Mechanism of cell detachment from temperature-modulated, hydrophilic-hydrophobic polymer surfaces. Biomaterials 16:297–303. doi:http://dx.doi.org/10.1016/0142-9612(95)93257-E

  141. Yamato M, Okuhara M, Karikusa F, Kikuchi A, Sakurai Y, Okano T (1999) Signal transduction and cytoskeletal reorganization are required for cell detachment from cell culture surfaces grafted with a temperature-responsive polymer. J Biomed Mater Res 44:44–52. doi:10.1002/(sici)1097-4636(199901)44:1<44:aid-jbm5>3.0.co;2-x

    Google Scholar 

  142. Kushida A, Yamato M, Konno C, Kikuchi A, Sakurai Y, Okano T (1999) Decrease in culture temperature releases monolayer endothelial cell sheets together with deposited fibronectin matrix from temperature-responsive culture surfaces. J Biomed Mater Res 45:355–362. doi:10.1002/(sici)1097-4636(19990615)45:4<355:aid-jbm10>3.0.co;2-7

    Google Scholar 

  143. Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E, Nagai S, Kikuchi A, Maeda N, Watanabe H, Okano T, Tano Y (2004) Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med 351:1187–1196. doi:10.1056/NEJMoa040455

    Google Scholar 

  144. Hasegawa M, Yamato M, Kikuchi A, Okano T, Ishikawa I (2005) Human periodontal ligament cell sheets can regenerate periodontal ligament tissue in an athymic rat model. Tissue Eng 11:469–478. doi:10.1089/ten.2005.11.469

    Google Scholar 

  145. Shimizu T, Yamato M, Isoi Y, Akutsu T, Setomaru T, Abe K, Kikuchi A, Umezu M, Okano T (2002) Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ Res 90:40–48. doi:10.1161/hh0302.105722

    Google Scholar 

  146. Shiroyanagi Y, Yamato M, Yamazaki Y, Toma H, Okano T (2004) Urothelium regeneration using viable cultured urothelial cell sheets grafted on demucosalized gastric flaps. BJU Int 93:1069–1075. doi:10.1111/j.1464-410X.2004.04783.x

    Google Scholar 

  147. Fukumori K, Akiyama Y, Yamato M, Kobayashi J, Sakai K, Okano T (2009) Temperature-responsive glass coverslips with an ultrathin poly(N-isopropylacrylamide) layer. Acta Biomater 5:470–476. doi:10.1016/j.actbio.2008.06.018

    Google Scholar 

  148. Halperin A, Kröger M (2012) Theoretical considerations on mechanisms of harvesting cells cultured on thermoresponsive polymer brushes. Biomaterials 33:4975–4987. doi:10.1016/j.biomaterials.2012.03.060

    Google Scholar 

  149. Iwanaga Y, Braun D, Fromherz P (2001) No correlation of focal contacts and close adhesion by comparing GFP-vinculin and fluorescence interference of DiI. Eur Biophys J 30:17–26. doi:10.1007/s002490000119

    Google Scholar 

  150. Bell G (1978) Models for the specific adhesion of cells to cells. Science 200:618–627. doi:10.1126/science.347575

    Google Scholar 

  151. Afroze F, Nies E, Berghmans H (2000) Phase transitions in the system poly(N-isopropylacrylamide)/water and swelling behaviour of the corresponding networks. J Mol Struct 554:55–68. doi:10.1016/s0022-2860(00)00559-7

    Google Scholar 

  152. Halperin A, Kröger M (2011) Collapse of thermoresponsive brushes and the tuning of protein adsorption. Macromolecules 44:6986–7005. doi:10.1021/ma201006h

    Google Scholar 

  153. Zhulina EB, Borisov OV, Priamitsyn VA (1990) Theory of steric stabilization of colloid dispersions by grafted polymers. J Colloid Interface Sci 137:495–511. doi:10.1016/0021-9797(90)90423-l

    Google Scholar 

  154. Moore SW, Roca-Cusachs P, Sheetz MP (2010) Stretchy proteins on stretchy substrates: the important elements of integrin-mediated rigidity sensing. Dev Cell 19:194–206. doi:10.1016/j.devcel.2010.07.018

    Google Scholar 

  155. Galaev IY, Dainiak MB, Plieva F, Mattiasson B (2007) Effect of matrix elasticity on affinity binding and release of bioparticles. Elution of bound cells by temperature-induced shrinkage of the smart macroporous hydrogel. Langmuir 23:35–40. doi:10.1021/la061462e

    Google Scholar 

  156. Kwon OH, Kikuchi A, Yamato M, Sakurai Y, Okano T (2000) Rapid cell sheet detachment from poly(N-isopropylacrylamide)-grafted porous cell culture membranes. J Biomed Mater Res 50:82–89. doi:10.1002/(sici)1097-4636(200004)50:1<82:aid-jbm12>3.0.co;2-7

    Google Scholar 

  157. Matsuda T (2004) Poly(N-isopropylacrylamide)-grafted gelatin as a thermoresponsive cell-adhesive, mold-releasable material for shape-engineered tissues. J Biomater Sci Polym Ed 15:947–955. doi:10.1163/1568562041271101

    Google Scholar 

  158. Tamura A, Kobayashi J, Yamato M, Okano T (2012) Temperature-responsive poly(N-isopropylacrylamide)-grafted microcarriers for large-scale non-invasive harvest of anchorage-dependent cells. Biomaterials 33:3803–3812. doi:10.1016/j.biomaterials.2012.01.060

    Google Scholar 

  159. Tamura A, Nishi M, Kobayashi J, Nagase K, Yajima H, Yamato M, Okano T (2012) Simultaneous enhancement of cell proliferation and thermally induced harvest efficiency based on temperature-responsive cationic copolymer-grafted microcarriers. Biomacromolecules 13:1765–1773. doi:10.1021/bm300256e

    Google Scholar 

  160. Aoyagi T, Ebara M, Sakai K, Sakurai Y, Okano T (2000) Novel bifunctional polymer with reactivity and temperature sensitivity. J Biomater Sci Polym Ed 11:101–110. doi:10.1163/156856200743526

    Google Scholar 

  161. Ebara M, Yamato M, Aoyagi T, Kikuchi A, Sakai K, Okano T (2004) Temperature-responsive cell culture surfaces enable “on−off” affinity control between cell integrins and RGDS ligands. Biomacromolecules 5:505–510. doi:10.1021/bm0343601

    Google Scholar 

  162. Ebara M, Yamato M, Aoyagi T, Kikuchi A, Sakai K, Okano T (2004) Immobilization of cell-adhesive peptides to temperature-responsive surfaces facilitates both serum-free cell adhesion and noninvasive cell harvest. Tissue Eng 10:1125–1135. doi:10.1089/ten.2004.10.1125

    Google Scholar 

  163. Ebara M, Yamato M, Aoyagi T, Kikuchi A, Sakai K, Okano T (2008) The effect of extensible PEG tethers on shielding between grafted thermo-responsive polymer chains and integrin—RGD binding. Biomaterials 29:3650–3655. doi:10.1016/j.biomaterials.2008.05.030

    Google Scholar 

  164. Ebara M, Yamato M, Aoyagi T, Kikuchi A, Sakai K, Okano T (2008) A novel approach to observing synergy effects of PHSRN on integrin—RGD binding using intelligent surfaces. Adv Mater 20:3034–3038. doi:10.1002/adma.200702308

    Google Scholar 

  165. Ebara M, Yamato M, Hirose M, Aoyagi T, Kikuchi A, Sakai K, Okano T (2003) Copolymerization of 2-Carboxyisopropylacrylamide with N-Isopropylacrylamide accelerates cell detachment from grafted surfaces by reducing temperature. Biomacromolecules 4:344–349. doi:10.1021/bm025692t

    Google Scholar 

  166. Hatakeyama H, Kikuchi A, Yamato M, Okano T (2006) Bio-functionalized thermoresponsive interfaces facilitating cell adhesion and proliferation. Biomaterials 27:5069–5078. doi:10.1016/j.biomaterials.2006.05.019

    Google Scholar 

  167. Tsuda Y, Kikuchi A, Yamato M, Nakao A, Sakurai Y, Umezu M, Okano T (2005) The use of patterned dual thermoresponsive surfaces for the collective recovery as co-cultured cell sheets. Biomaterials 26:1885–1893. doi:10.1016/j.biomaterials.2004.06.005

    Google Scholar 

  168. Lin JB, Isenberg BC, Shen Y, Schorsch K, Sazonova OV, Wong JY (2012) Thermo-responsive poly(N-isopropylacrylamide) grafted onto microtextured poly(dimethylsiloxane) for aligned cell sheet engineering. Colloids Surf B 99:108–115. doi:10.1016/j.colsurfb.2011.10.040

    Google Scholar 

  169. Tsuda Y, Yamato M, Kikuchi A, Watanabe M, Chen G, Takahashi Y, Okano T (2007) Thermoresponsive microtextured culture surfaces facilitate fabrication of capillary networks. Adv Mater 19:3633–3636. doi:10.1002/adma.200700988

    Google Scholar 

  170. Tsuda Y, Shimizu T, Yamato M, Kikuchi A, Sasagawa T, Sekiya S, Kobayashi J, Chen G, Okano T (2007) Cellular control of tissue architectures using a three-dimensional tissue fabrication technique. Biomaterials 28:4939–4946. doi:10.1016/j.biomaterials.2007.08.002

    Google Scholar 

  171. Wischerhoff E, Uhlig K, Lankenau A, Börner HG, Laschewsky A, Duschl C, Lutz J-F (2008) Controlled cell adhesion on PEG-based switchable surfaces. Angew Chem Int Ed 47:5666–5668. doi:10.1002/anie.200801202

    Google Scholar 

  172. Higuchi A, Aoki N, Yamamoto T, Miyazaki T, Fukushima H, Tak TM, Jyujyoji S, Egashira S, Matsuoka Y, Natori SH (2006) Temperature-induced cell detachment on immobilized pluronic surface. J Biomed Mater Res Part A 79A:380–392. doi:10.1002/jbm.a.30773

    Google Scholar 

  173. Seo S-J, Park I-K, Yoo M-K, Shirakawa M, Akaike T, Cho C-S (2004) Xyloglucan as a synthetic extracellular matrix for hepatocyte attachment. J Biomater Sci Polym Ed 15:1375–1387. doi:10.1163/1568562042368059

    Google Scholar 

  174. Mie M, Mizushima Y, Kobatake E (2008) Novel extracellular matrix for cell sheet recovery using genetically engineered elastin-like protein. J Biomed Mater Res B Appl Biomater 86B:283–290. doi:10.1002/jbm.b.31019

    Google Scholar 

  175. Byambaa B, Konno T, Ishihara K (2012) Cell adhesion control on photoreactive phospholipid polymer surfaces. Colloids Surf, B 99:1–6. doi:10.1016/j.colsurfb.2011.08.029

    Google Scholar 

  176. Pasparakis G, Manouras T, Selimis A, Vamvakaki M, Argitis P (2011) Laser-induced cell detachment and patterning with photodegradable polymer substrates. Angew Chem Int Ed 50:4142–4145. doi:10.1002/anie.201007310

    Google Scholar 

  177. Edahiro J, Sumaru K, Tada Y, Ohi K, Takagi T, Kameda M, Shinbo T, Kanamori T, Yoshimi Y (2005) In situ control of cell adhesion using photoresponsive culture surface. Biomacromolecules 6:970–974. doi:10.1021/bm0493382

    Google Scholar 

  178. Liu D, Xie Y, Shao H, Jiang X (2009) Using azobenzene-embedded self-assembled monolayers to photochemically control cell adhesion reversibly. Angew Chem Int Ed 48:4406–4408. doi:10.1002/anie.200901130

    Google Scholar 

  179. Cole MA, Voelcker NH, Thissen H, Griesser HJ (2009) Stimuli-responsive interfaces and systems for the control of protein–surface and cell–surface interactions. Biomaterials 30:1827–1850. doi:10.1016/j.biomaterials.2008.12.026

    Google Scholar 

  180. Tang Z, Wang Y, Podsiadlo P, Kotov NA (2006) Biomedical applications of layer-by-layer assembly: From biomimetics to tissue engineering. Adv Mater 18:3203–3224. doi:10.1002/adma.200600113

    Google Scholar 

  181. Iwai R, Kusakabe S, Nemoto Y, Nakayama Y (2012) Deposition gene transfection using bioconjugates of DNA and thermoresponsive cationic homopolymer. Bioconjug Chem 23:751–757. doi:10.1021/bc2005768

    Google Scholar 

  182. Shah S, Lee JY, Verkhoturov S, Tuleuova N, Schweikert EA, Ramanculov E, Revzin A (2008) Exercising spatiotemporal control of cell attachment with optically transparent microelectrodes. Langmuir 24:6837–6844. doi:10.1021/la800231e

    Google Scholar 

  183. Persson KM, Karlsson R, Svennersten K, Löffler S, Jager EWH, Richter-Dahlfors A, Konradsson P, Berggren M (2011) Electronic control of cell detachment using a self-doped conducting polymer. Adv Mater 23:4403–4408. doi:10.1002/adma.201101724

    Google Scholar 

  184. Davila J, Chassepot A, Longo J, Boulmedais F, Reisch A, Frisch B, Meyer F, Voegel J-C, Mésini PJ, Senger B, Metz-Boutigue M-H, Hemmerlé J, Lavalle P, Schaaf P, Jierry L (2012) Cyto-mechanoresponsive polyelectrolyte multilayer films. J Am Chem Soc 134:83–86. doi:10.1021/ja208970b

    Google Scholar 

  185. Pasparakis G, Vamvakaki M (2011) Multiresponsive polymers: nano-sized assemblies, stimuli-sensitive gels and smart surfaces. Polym Chem 2:1234. doi:10.1039/c0py00424c

    Google Scholar 

  186. Schild HG (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:163–249. doi:10.1016/0079-6700(92)90023-r

    Google Scholar 

  187. Allen AL, Tan KJ, Fu H, Batteas JD, Bergbreiter DE (2012) Solute- and temperature-responsive “smart” grafts and supported membranes formed by covalent layer-by-layer assembly. Langmuir 28:5237–5242. doi:10.1021/la204626e

    Google Scholar 

  188. Li P-F, Xie R, Jiang J-C, Meng T, Yang M, Ju X-J, Yang L, Chu L-Y (2009) Thermo-responsive gating membranes with controllable length and density of poly(N-isopropylacrylamide) chains grafted by ATRP method. J Membr Sci 337:310–317. doi:10.1016/j.memsci.2009.04.010

    Google Scholar 

  189. Kuroki H, Ohashi H, Ito T, Tamaki T, Yamaguchi T (2010) Isolation and analysis of a grafted polymer onto a straight cylindrical pore in a thermal-responsive gating membrane and elucidation of its permeation behavior. J Membr Sci 352:22–31. doi:10.1016/j.memsci.2010.01.052

    Google Scholar 

  190. Lequieu W, Shtanko N, Duprez F (2005) Track etched membranes with thermo-adjustable porosity and separation properties by surface immobilization of poly(N-vinylcaprolactam). J Membr Sci. doi:10.1016/j.memsci.2005.02.007

    Google Scholar 

  191. Zhou H, Chen Y, Fan H, Shi H, Luo Z, Shi B (2008) The polyurethane/SiO2 nano-hybrid membrane with temperature sensitivity for water vapor permeation. J Membr Sci 318:71–78. doi:10.1016/j.memsci.2008.02.024

    Google Scholar 

  192. Wu G, Li Y, Han M, Liu X (2006) Novel thermo-sensitive membranes prepared by rapid bulk photo-grafting polymerization of N, N-diethylacrylamide onto the microfiltration membranes Nylon. J Membr Sci 283:13–20. doi:10.1016/j.memsci.2006.05.017

    Google Scholar 

  193. Zhao C, Nie S, Tang M, Sun S (2011) Polymeric pH-sensitive membranes—a review. Prog Polym Sci 36:1499–1520. doi:10.1016/j.progpolymsci.2011.05.004

    Google Scholar 

  194. Tomicki F, Krix D, Nienhaus H, Ulbricht M (2011) Stimuli-responsive track-etched membranes via surface-initiated controlled radical polymerization: influence of grafting density and pore size. J Membr Sci 377:124–133. doi:10.1016/j.memsci.2011.04.028

    Google Scholar 

  195. Kaetsu I, Nakayama H, Uchida K, Sutani K (2001) Radiation curing of intelligent coating on biofunctional membranes. Radiat Phys Chem 60:513–520. doi:10.1016/s0969-806x(00)00409-6

    Google Scholar 

  196. Zhang K, Wu XY (2004) Temperature and pH-responsive polymeric composite membranes for controlled delivery of proteins and peptides. Biomaterials 25:5281–5291. doi:10.1016/j.biomaterials.2003.12.032

    Google Scholar 

  197. Weh K, Noack M, Ruhmann R, Hoffmann K, Toussaint P, Caro J (1998) Modification of the transport properties of a polymethacrylate-azobenzene membrane by photochemical switching. Chem Eng Technol 21:408. doi:10.1002/(sici)1521-4125(199805)21:5<408:aid-ceat408>3.0.co;2-l

    Google Scholar 

  198. Chung D-J, Ito Y, Imanishi Y (1994) Preparation of porous membranes grafted with poly(spiropyran-containing methacrylate) and photocontrol of permeability. J Appl Polym Sci 51:2027–2033. doi:10.1002/app.1994.070511207

    Google Scholar 

  199. Yamaguchi T, Ito T, Sato T, Shinbo T, Nakao S-i (1999) Development of a fast response molecular recognition Ion gating membrane. J Am Chem Soc 121:4078–4079. doi:10.1021/ja984170b

    Google Scholar 

  200. Ito T, Hioki T, Yamaguchi T, Shinbo T, Nakao S-i, Kimura S (2002) Development of a molecular recognition ion gating membrane and estimation of its pore size control. J Am Chem Soc 124:7840–7846. doi:10.1021/ja012648x

    Google Scholar 

  201. Yang M, Xie R, Wang J-Y, Ju X-J, Yang L, Chu L-Y (2010) Gating characteristics of thermo-responsive and molecular-recognizable membranes based on poly(N-isopropylacrylamide) and β-cyclodextrin. J Membr Sci 355:142–150. doi:10.1016/j.memsci.2010.03.015

    Google Scholar 

  202. Kuroki H, Ito T, Ohashi H, Tamaki T, Yamaguchi T (2011) Biomolecule-recognition gating membrane using biomolecular cross-linking and polymer phase transition. Anal Chem 83:9226–9229. doi:10.1021/ac202629h

    Google Scholar 

  203. Huck WTS, Vamvakaki M (2008) Responsive polymers for nanoscale actuation. Mater Today 11:24–32. doi:10.1016/s1369-7021(08)70146-9

    Google Scholar 

  204. He X, Aizenberg M, Kuksenok O, Zarzar LD, Shastri A, Balazs AC, Aizenberg J (2012) Synthetic homeostatic materials with chemo-mechano-chemical self-regulation. Nature 487:214–218. doi:10.1038/nature11223

    Google Scholar 

  205. Sidorenko A, Krupenkin T, Taylor A, Fratzl P, Aizenberg J (2007) Reversible switching of hydrogel-actuated nanostructures into complex micropatterns. Science 315:487–490. doi:10.1126/science.1135516

    Google Scholar 

  206. Zou Y, Lam A, Brooks DE, Srikantha Phani A, Kizhakkedathu JN (2011) Bending and stretching actuation of soft materials through surface-initiated polymerization. Angew Chem Int Ed 50:5116–5119. doi:10.1002/anie.201008252

    Google Scholar 

  207. Kanazawa H, Yamamoto K, Matsushima Y, Takai N, Kikuchi A, Sakurai Y, Okano T (1996) Temperature-responsive chromatography using poly(N-isopropylacrylamide)-modified silica. Anal Chem 68:100–105. doi:10.1021/ac950359j

    Google Scholar 

  208. Kanazawa H, Matsushima Y, Okano T (1998) Temperature-responsive chromatography. TrAC Trends Anal Chem 17:435–440. doi:10.1016/s0165-9936(98)00044-2

    Google Scholar 

  209. Kanazawa H, Yamamoto K, Kashiwase Y, Matsushima Y, Takai N, Kikuchi A, Sakurai Y, Okano T (1997) Analysis of peptides and proteins by temperature-responsive chromatographic system using N-isopropylacrylamide polymer-modified columns. J Pharm Biomed Anal 15:1545–1550. doi:10.1016/s0731-7085(96)02004-3

    Google Scholar 

  210. Kanazawa H (2007) Thermally responsive chromatographic materials using functional polymers. J Sep Sci 30:1646–1656. doi:10.1002/jssc.200700093

    Google Scholar 

  211. Nagase K, Kobayashi J, Kikuchi A, Akiyama Y, Annaka M, Kanazawa H, Okano T (2008) Influence of graft Interface polarity on hydration/dehydration of grafted thermoresponsive polymer brushes and steroid separation using all-aqueous chromatography. Langmuir 24:10981–10987. doi:10.1021/la801949w

    Google Scholar 

  212. Tanaka N, Kobayashi H, Nakanishi K, Minakuchi H, Ishizuka N (2001) Peer reviewed: monolithic LC columns. Anal Chem 73:420 A–429 A. doi:10.1021/ac012495w

  213. Nagase K, Kobayashi J, Kikuchi A, Akiyama Y, Kanazawa H, Okano T (2011) Thermoresponsive polymer brush on monolithic-silica-rod for the high-speed separation of bioactive compounds. Langmuir 27:10830–10839. doi:10.1021/la201360p

    Google Scholar 

  214. Wei X, Qi L, Yang G, Wang F (2009) Preparation and characterization of monolithic column by grafting pH-responsive polymer. Talanta 79:739–745. doi:10.1016/j.talanta.2009.04.062

    Google Scholar 

  215. Zhang R, Yang G, Xin P, Qi L, Chen Y (2009) Preparation of poly(N-isopropylacrylamide)-grafted polymer monolith for hydrophobic interaction chromatography of proteins. J Chromatogr A 1216:2404–2411. doi:10.1016/j.chroma.2009.01.023

    Google Scholar 

  216. Nagase K, Kobayashi J, Kikuchi A, Akiyama Y, Kanazawa H, Okano T (2012) High stability of thermoresponsive polymer-brush-grafted silica beads as chromatography matrices. ACS Appl Mater Interfaces 4:1998–2008. doi:10.1021/am201832b

    Google Scholar 

  217. Mizutani A, Nagase K, Kikuchi A, Kanazawa H, Akiyama Y, Kobayashi J, Annaka M, Okano T (2010) Effective separation of peptides using highly dense thermo-responsive polymer brush-grafted porous polystyrene beads. J Chromatogr B 878:2191–2198. doi:10.1016/j.jchromb.2010.06.026

    Google Scholar 

  218. Mizutani A, Nagase K, Kikuchi A, Kanazawa H, Akiyama Y, Kobayashi J, Annaka M, Okano T (2010) Thermo-responsive polymer brush-grafted porous polystyrene beads for all-aqueous chromatography. J Chromatogr A 1217:522–529. doi:10.1016/j.chroma.2009.11.073

    Google Scholar 

  219. Shen Y, Qi L, Wei X, Zhang R, Mao L (2011) Preparation of well-defined environmentally responsive polymer brushes on monolithic surface by two-step atom transfer radical polymerization method for HPLC. Polymer 52:3725–3731. doi:10.1016/j.polymer.2011.06.041

    Google Scholar 

  220. Feil H, Bae YH, Feijen J, Kim SW (1992) Mutual influence of pH and temperature on the swelling of ionizable and thermosensitive hydrogels. Macromolecules 25:5528–5530. doi:10.1021/ma00046a063

    Google Scholar 

  221. Kobayashi J, Kikuchi A, Sakai K, Okano T (2002) Aqueous chromatography utilizing hydrophobicity-modified anionic temperature-responsive hydrogel for stationary phases. J Chromatogr A 958:109–119. doi:10.1016/s0021-9673(02)00388-6

    Google Scholar 

  222. Kobayashi J, Kikuchi A, Sakai K, Okano T (2003) Cross-linked thermoresponsive anionic polymer-grafted surfaces to separate bioactive basic peptides. Anal Chem 75:3244–3249. doi:10.1021/ac026364m

    Google Scholar 

  223. Ayano E, Sakamoto C, Kanazawa H, Kikuchi A, Okano T (2006) Separation of nucleotides with an aqueous mobile phase using pH- and temperature-responsive polymer modified packing materials. Anal Sci 22:539–543. doi:10.2116/analsci.22.539

    Google Scholar 

  224. Nagase K, Kobayashi J, Kikuchi A, Akiyama Y, Kanazawa H, Okano T (2011) Thermally-modulated on/off-adsorption materials for pharmaceutical protein purification. Biomaterials 32:619–627. doi:10.1016/j.biomaterials.2010.09.012

    Google Scholar 

  225. Hosoya K, Kimata K, Araki T, Tanaka N, Frechet JMJ (1995) Temperature-controlled high-performance liquid chromatography using a uniformly sized temperature-responsive polymer-based packing material. Anal Chem 67:1907–1911. doi:10.1021/ac00107a024

    Google Scholar 

  226. Lakhiari H, Okano T, Nurdin N, Luthi C, Descouts P, Muller D, Jozefonvicz J (1998) Temperature-responsive size-exclusion chromatography using poly(N-isopropylacrylamide) grafted silica. Biochimica et Biophysica Acta (BBA)—General Subjects 1379:303–313. doi:10.1016/s0304-4165(97)00110-4

  227. Yoshizako K, Akiyama Y, Yamanaka H, Shinohara Y, Hasegawa Y, Carredano E, Kikuchi A, Okano T (2002) Regulation of protein binding toward a ligand on chromatographic matrixes by masking and forced-releasing effects using thermoresponsive polymer. Anal Chem 74:4160–4166. doi:10.1021/ac025523z

    Google Scholar 

  228. Yamanaka H, Yoshizako K, Akiyama Y, Sota H, Hasegawa Y, Shinohara Y, Kikuchi A, Okano T (2003) Affinity chromatography with collapsibly tethered ligands. Anal Chem 75:1658–1663. doi:10.1021/ac0263768

    Google Scholar 

  229. Liu Z, Ullah K, Su L, Lv F, Deng Y, Dai R, Li Y, Zhang Y (2012) Switchable boronate affinity materials for thermally modulated capture, separation and enrichment of cis-diol biomolecules. J Mater Chem 22:18753. doi:10.1039/c2jm33578f

    Google Scholar 

  230. Wang X, Gu H, Yang Z (2005) The heating effect of magnetic fluids in an alternating magnetic field. J Magn Magn Mater 293:334–340. doi:10.1016/j.jmmm.2005.02.028

    Google Scholar 

  231. Yagi H, Yamamoto K, Aoyagi T (2008) New liquid chromatography method combining thermo-responsive material and inductive heating via alternating magnetic field. J Chromatogr B 876:97–102. doi:10.1016/j.jchromb.2008.10.028

    Google Scholar 

  232. Yagi H, Ebara M, Yamamoto K, Aoyagi T (2011) Effect of grafted smart polymer architectures on interaction with hydrophobic molecules in newly developed induction heating chromatography system. Mater Sci Eng C 31:1681–1687. doi:10.1016/j.msec.2011.07.018

    Google Scholar 

  233. Techawanitchai P, Yamamoto K, Ebara M, Aoyagi T (2011) Surface design with self-heating smart polymers for on–off switchable traps. Sci Technol Adv Mater 12:044609. doi:10.1088/1468-6996/12/4/044609

    Google Scholar 

  234. Terry SC, Jerman JH, Angell JB (1979) A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Trans Electron Devices 26:1880–1886. doi:10.1109/t-ed.1979.19791

    Google Scholar 

  235. Manz A, Fettinger JC, Verpoorte E, Lüdi H, Widmer HM, Harrison DJ (1991) Micromachining of monocrystalline silicon and glass for chemical analysis systems A look into next century’s technology or just a fashionable craze? TrAC, Trends Anal Chem 10:144–149. doi:10.1016/0165-9936(91)85116-9

    Google Scholar 

  236. Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH, Devadoss C, Jo B-H (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404:588–590

    Google Scholar 

  237. Oh KW, Ahn CH (2006) A review of microvalves. J Micromech Microeng 16:R13–R39. doi:10.1088/0960-1317/16/5/r01

    Google Scholar 

  238. Idota N, Kikuchi A, Kobayashi J, Sakai K, Okano T (2005) Microfluidic valves comprising nanolayered thermoresponsive polymer-grafted capillaries. Adv Mater 17:2723–2727. doi:10.1002/adma.200402068

    Google Scholar 

  239. Huh D, Tkaczyk AH, Bahng JH, Chang Y, Wei H-H, Grotberg JB, Kim C-J, Kurabayashi K, Takayama S (2003) Reversible switching of high-speed air−liquid two-phase flows using electrowetting-assisted flow-pattern change. J Am Chem Soc 125:14678–14679. doi:10.1021/ja037350g

    Google Scholar 

  240. Takei G, Nonogi M, Hibara A, Kitamori T, Kim H-B (2007) Tuning microchannel wettability and fabrication of multiple-step Laplace valves. Lab Chip 7:596. doi:10.1039/b618851f

    Google Scholar 

  241. Pumera M, Escarpa A (2009) Nanomaterials as electrochemical detectors in microfluidics and CE: fundamentals, designs, and applications. Electrophoresis 30:3315–3323. doi:10.1002/elps.200900008

    Google Scholar 

  242. Reichmuth DS, Shepodd TJ, Kirby BJ (2005) Microchip HPLC of peptides and proteins. Anal Chem 77:2997–3000. doi:10.1021/ac048358r

    Google Scholar 

  243. Huber DL, Manginell RP, Samara MA, Kim BI, Bunker BC (2003) Programmed adsorption and release of proteins in a microfluidic device. Science 301:352–354. doi:10.1126/science.1080759

    Google Scholar 

  244. Chen J-K, Li J-Y (2010) Detection of specific DNA using a microfluidic device featuring tethered poly(N-isopropylacrylamide) on a silicon substrate. Appl Phys Lett 97:063701. doi:10.1063/1.3476356

    Google Scholar 

  245. Ebara M, Hoffman JM, Hoffman AS, Stayton PS (2006) Switchable surface traps for injectable bead-based chromatography in PDMS microfluidic channels. Lab Chip 6:843–848

    Google Scholar 

  246. Hoffman JM, Ebara M, Lai JJ, Hoffman AS, Folch A, Stayton PS (2010) A helical flow, circular microreactor for separating and enriching “smart” polymer–antibody capture reagents. Lab Chip 10:3130. doi:10.1039/c004978f

    Google Scholar 

  247. Lai JJ, Hoffman JM, Ebara M, Hoffman AS, Estournès C, Wattiaux A, Stayton PS (2007) Dual magnetic-/temperature-responsive nanoparticles for microfluidic separations and assays. Langmuir 23:7385–7391. doi:10.1021/la062527g

    Google Scholar 

  248. Lai JJ, Nelson KE, Nash MA, Hoffman AS, Yager P, Stayton PS (2009) Dynamic bioprocessing and microfluidic transport control with smart magnetic nanoparticles in laminar-flow devices. Lab Chip 9:1997–2002

    Google Scholar 

  249. Malmstadt N, Hoffman AS, Stayton PS (2004) “Smart” mobile affinity matrix for microfluidic immunoassays. Lab Chip 4:412–415

    Google Scholar 

  250. El-Ali J, Sorger PK, Jensen KF (2006) Cells on chips. Nature 442:403–411. doi:10.1038/nature05063

    Google Scholar 

  251. Ernst O, Lieske A, Jäger M, Lankenau A, Duschl C (2007) Control of cell detachment in a microfluidic device using a thermo-responsive copolymer on a gold substrate. Lab Chip 7:1322. doi:10.1039/b708619a

    Google Scholar 

  252. Tang Z, Akiyama Y, Itoga K, Kobayashi J, Yamato M, Okano T (2012) Shear stress-dependent cell detachment from temperature-responsive cell culture surfaces in a microfluidic device. Biomaterials 33:7405–7411. doi:10.1016/j.biomaterials.2012.06.077

    Google Scholar 

  253. Ma D, Chen H, Li Z, He Q (2010) Thermomodulated cell culture/harvest in polydimethylsiloxane microchannels with poly(N-isopropylacrylamide)-grafted surface. Biomicrofluidics 4:044107. doi:10.1063/1.3516038

    Google Scholar 

  254. Jang K, Xu Y, Tanaka Y, Sato K, Mawatari K, Konno T, Ishihara K, Kitamori T (2010) Single-cell attachment and culture method using a photochemical reaction in a closed microfluidic system. Biomicrofluidics 4:032208. doi:10.1063/1.3494287

    Google Scholar 

  255. Yamaguchi S, Yamahira S, Kikuchi K, Sumaru K, Kanamori T, Nagamune T (2012) Photocontrollable dynamic micropatterning of non-adherent mammalian cells using a photocleavable poly(ethylene glycol) lipid. Angew Chem Int Ed 51:128–131. doi:10.1002/anie.201106106

    Google Scholar 

  256. Borenstein JT, Terai H, King KR, Weinberg EJ, Kaazempur-Mofrad MR, Vacanti JP (2002) Microfabrication technology for vascularized tissue engineering. Biomed Microdevices 4:167–175. doi:10.1023/a:1016040212127

    Google Scholar 

  257. Yamashita T, Tanaka Y, Idota N, Sato K, Mawatari K, Kitamori T (2011) Cultivation and recovery of vascular endothelial cells in microchannels of a separable micro-chemical chip. Biomaterials 32:2459–2465. doi:10.1016/j.biomaterials.2010.12.012

    Google Scholar 

  258. Benenson Y, Gil B, Ben-Dor U, Adar R, Shapiro E (2004) An autonomous molecular computer for logical control of gene expression. Nature 429:423–429. doi:10.1038/nature02551

    Google Scholar 

  259. Wasserman WW, Vanunu O, Magger O, Ruppin E, Shlomi T, Sharan R (2010) Associating genes and protein complexes with disease via network propagation. PLoS Comput Biol 6:e1000641. doi:10.1371/journal.pcbi.1000641

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naokazu Idota .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 National Institute for Materials Science, Japan. Published by Springer Japan

About this chapter

Cite this chapter

Ebara, M. et al. (2014). Smart Surfaces. In: Smart Biomaterials. NIMS Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54400-5_4

Download citation

Publish with us

Policies and ethics