Skip to main content

The Proteoglycan-Degrading Enzymes Promote Functional Recovery After Spinal Cord Injury: Keratan Sulfate and Chondroitin Sulfate

  • Chapter
  • First Online:
Neuroprotection and Regeneration of the Spinal Cord

Abstract

Failure of axonal regrowth is a major obstacle to the treatment of injuries of the adult central nervous system (CNS), and proteoglycans are strong inhibitory cues. Chondroitin sulfate (CS) proteoglycans are strong inhibitors of neuronal injuries of the adult CNS. Besides CS chains, keratan sulfate (KS) chains are also covalently attached to some proteoglycans. However, the biological significance of KS remains to be not well understood. Here we investigated the role of KS in functional recovery and neural plasticity after spinal cord injury (SCI), using KS knockout mice and KS-degrading enzyme, keratanase II (K-II). Motor function recovery with enhanced axonal regeneration/sprouting was promoted in the KS-deficient mice and KS-degrading rats after the thoracic SCI. In vitro assays also demonstrated that KS proteoglycans were required for the proteoglycan-mediated inhibition of neurite outgrowth after SCI. Unexpectedly, K-II and the CS-degrading enzyme chondroitinase ABC (C-ABC) showed comparable effects in vivo and in vitro, but these two enzymes worked neither additively nor synergistically. These data and further in vitro studies suggested that all the three components of the proteoglycan moiety, i.e., the core protein, CS chains, and KS chains, were required for the inhibitory activity of proteoglycans. Our data indicate that KS is essential for and has a comparable impact as CS on post-injury plasticity. Our study also demonstrated that KS and CS are independently required for the proteoglycan-mediated inhibition of axonal regeneration/sprouting, and KS is a candidate target for the treatment of neuronal injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davies SJ, Goucher DR, Doller C, Silver J (1999) Robust regeneration of adult sensory axons in degenerating white matter of the adult rat spinal cord. J Neurosci 19(14):5810–5822

    CAS  PubMed  Google Scholar 

  2. Grimpe B, Silver J (2004) A novel DNA enzyme reduces glycosaminoglycan chains in the glial scar and allows microtransplanted dorsal root ganglia axons to regenerate beyond lesions in the spinal cord. J Neurosci 24(6):1393–1397. doi:10.1523/JNEUROSCI.4986-03.200424/6/1393 [pii]

    Article  CAS  PubMed  Google Scholar 

  3. Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5(2):146–156. doi:10.1038/nrn1326nrn1326 [pii]

    Article  CAS  PubMed  Google Scholar 

  4. Tom VJ, Steinmetz MP, Miller JH, Doller CM, Silver J (2004) Studies on the development and behavior of the dystrophic growth cone, the hallmark of regeneration failure, in an in vitro model of the glial scar and after spinal cord injury. J Neurosci 24(29):6531–6539. doi:10.1523/JNEUROSCI.0994-04.200424/29/6531 [pii]

    Article  CAS  PubMed  Google Scholar 

  5. Moon LD, Asher RA, Rhodes KE, Fawcett JW (2001) Regeneration of CNS axons back to their target following treatment of adult rat brain with chondroitinase ABC. Nat Neurosci 4(5):465–466. doi:10.1038/8741587415 [pii]

    CAS  PubMed  Google Scholar 

  6. Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN, Fawcett JW, McMahon SB (2002) Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416(6881):636–640. doi:10.1038/416636a416636a [pii]

    Article  CAS  PubMed  Google Scholar 

  7. Powell EM, Fawcett JW, Geller HM (1997) Proteoglycans provide neurite guidance at an astrocyte boundary. Mol Cell Neurosci 10(1–2):27–42. doi:S1044-7431(97)90629-1 [pii]10.1006/mcne.1997.0629

    Article  CAS  PubMed  Google Scholar 

  8. Snow DM, Steindler DA, Silver J (1990) Molecular and cellular characterization of the glial roof plate of the spinal cord and optic tectum: a possible role for a proteoglycan in the development of an axon barrier. Dev Biol 138(2):359–376. doi:0012-1606(90)90203-U [pii]

    Article  CAS  PubMed  Google Scholar 

  9. Kitayama K, Hayashida Y, Nishida K, Akama TO (2007) Enzymes responsible for synthesis of corneal keratan sulfate glycosaminoglycans. J Biol Chem 282(41):30085–30096. doi:10.1074/jbc.M703695200

    Article  CAS  PubMed  Google Scholar 

  10. Akama TO, Nishida K, Nakayama J, Watanabe H, Ozaki K, Nakamura T, Dota A, Kawasaki S, Inoue Y, Maeda N, Yamamoto S, Fujiwara T, Thonar EJ, Shimomura Y, Kinoshita S, Tanigami A, Fukuda MN (2000) Macular corneal dystrophy type I and type II are caused by distinct mutations in a new sulphotransferase gene. Nat Genet 26(2):237–241. doi:10.1038/79987

    Article  CAS  PubMed  Google Scholar 

  11. Zhang H, Muramatsu T, Murase A, Yuasa S, Uchimura K, Kadomatsu K (2006) N-Acetylglucosamine 6-O-sulfotransferase-1 is required for brain keratan sulfate biosynthesis and glial scar formation after brain injury. Glycobiology 16(8):702–710. doi:cwj115 [pii]10.1093/glycob/cwj115

    Article  CAS  PubMed  Google Scholar 

  12. Ito Z, Sakamoto K, Imagama S, Matsuyama Y, Zhang H, Hirano K, Ando K, Yamashita T, Ishiguro N, Kadomatsu K (2010) N-acetylglucosamine 6-O-sulfotransferase-1-deficient mice show better functional recovery after spinal cord injury. J Neurosci 30(17):5937–5947. doi:30/17/5937 [pii]10.1523/JNEUROSCI.2570-09.2010

    Article  CAS  PubMed  Google Scholar 

  13. Imagama S, Sakamoto K, Tauchi R, Shinjo R, Ohgomori T, Ito Z, Zhang H, Nishida Y, Asami N, Takeshita S, Sugiura N, Watanabe H, Yamashita T, Ishiguro N, Matsuyama Y, Kadomatsu K (2011) Keratan sulfate restricts neural plasticity after spinal cord injury. J Neurosci 31(47):17091–17102. doi:10.1523/JNEUROSCI.5120-10.2011

    Article  CAS  PubMed  Google Scholar 

  14. Basso DM, Fisher LC, Anderson AJ, Jakeman LB, McTigue DM, Popovich PG (2006) Basso mouse scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. J Neurotrauma 23(5):635–659. doi:10.1089/neu.2006.23.635

    Article  PubMed  Google Scholar 

  15. Liesi P, Kauppila T (2002) Induction of type IV collagen and other basement-membrane-associated proteins after spinal cord injury of the adult rat may participate in formation of the glial scar. Exp Neurol 173(1):31–45. doi:10.1006/exnr.2001.7800

    Article  CAS  PubMed  Google Scholar 

  16. Yamagishi K, Suzuki K, Imai K, Mochizuki H, Morikawa K, Kyogashima M, Kimata K, Watanabe H (2003) Purification, characterization, and molecular cloning of a novel keratan sulfate hydrolase, endo-beta-N-acetylglucosaminidase, from Bacillus circulans. J Biol Chem 278(28):25766–25772. doi:10.1074/jbc.M212183200M212183200 [pii]

    Article  CAS  PubMed  Google Scholar 

  17. Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12(1):1–21

    Article  CAS  PubMed  Google Scholar 

  18. Hutchinson KJ, Gomez-Pinilla F, Crowe MJ, Ying Z, Basso DM (2004) Three exercise paradigms differentially improve sensory recovery after spinal cord contusion in rats. Brain 127(Pt 6):1403–1414. doi:10.1093/brain/awh160awh160 [pii]

    Article  PubMed  Google Scholar 

  19. Asher RA, Scheibe RJ, Keiser HD, Bignami A (1995) On the existence of a cartilage-like proteoglycan and link proteins in the central nervous system. Glia 13(4):294–308. doi:10.1002/glia.440130406

    Article  CAS  PubMed  Google Scholar 

  20. Johnson WE, Caterson B, Eisenstein SM, Hynds DL, Snow DM, Roberts S (2002) Human intervertebral disc aggrecan inhibits nerve growth in vitro. Arthritis Rheum 46(10):2658–2664. doi:10.1002/art.10585

    Article  CAS  PubMed  Google Scholar 

  21. Cole GJ, McCabe CF (1991) Identification of a developmentally regulated keratan sulfate proteoglycan that inhibits cell adhesion and neurite outgrowth. Neuron 7(6):1007–1018. doi:0896-6273(91)90345-Z [pii]

    Article  CAS  PubMed  Google Scholar 

  22. Jones LL, Tuszynski MH (2002) Spinal cord injury elicits expression of keratan sulfate proteoglycans by macrophages, reactive microglia, and oligodendrocyte progenitors. J Neurosci 22(11):4611–4624. doi:2002646422/11/4611 [pii]

    CAS  PubMed  Google Scholar 

  23. Moon LD, Asher RA, Rhodes KE, Fawcett JW (2002) Relationship between sprouting axons, proteoglycans and glial cells following unilateral nigrostriatal axotomy in the adult rat. Neuroscience 109(1):101–117. doi:S0306452201004572 [pii]

    Article  CAS  PubMed  Google Scholar 

  24. Funderburgh JL (2000) Keratan sulfate: structure, biosynthesis, and function. Glycobiology 10(10):951–958

    Article  CAS  PubMed  Google Scholar 

  25. Funderburgh JL (2002) Keratan sulfate biosynthesis. IUBMB Life 54(4):187–194. doi:10.1080/15216540214932

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Margolis RK, Margolis RU (1993) Nervous tissue proteoglycans. Experientia 49(5):429–446

    Article  CAS  PubMed  Google Scholar 

  27. Shen Y, Tenney AP, Busch SA, Horn KP, Cuascut FX, Liu K, He Z, Silver J, Flanagan JG (2009) PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science 326(5952):592–596. doi:1178310 [pii]10.1126/science.1178310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

 We wish to thank K. Kadomatsu (Nagoya University), K. Sakamoto (Nagoya University), and T. Yamashita (Osaka University) for their advising us throughout these studies, K. Suzuki, Y. Kurahashi, and A. Tanaka (Sekagaku Corporation) for performing the stability test of K-II and the HPLC analysis of sugar, M. Sawada (Nagoya University) for guidance with the primary culture of neurons, and N. Ozaki (Nagoya University) for guidance with the sensory tests. We also thank T. Natori (Yamanashi-Gakuin University), M. Iida, Y. Naito, S. Nakashima, N. Misawa, and Y. Miwa (Nagoya University) for their excellent technical assistance.

Conflict of Interest  All authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiro Imagama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Imagama, S., Ito, Z., Ando, K., Matsuyama, Y., Nishida, Y., Ishiguro, N. (2014). The Proteoglycan-Degrading Enzymes Promote Functional Recovery After Spinal Cord Injury: Keratan Sulfate and Chondroitin Sulfate. In: Uchida, K., Nakamura, M., Ozawa, H., Katoh, S., Toyama, Y. (eds) Neuroprotection and Regeneration of the Spinal Cord. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54502-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54502-6_15

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54501-9

  • Online ISBN: 978-4-431-54502-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics