Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 573 Accesses

Abstract

The only source of CP violation in the standard model (SM) is the Cabibbo-Kobayashi-Maskawa (CKM) matrix, and its contribution to the electric dipole moment (EDM) is known to be very small. This fact is one of the most important arguments to claim that the study of EDM is very interesting. We must justify this statement by showing the smallness of the SM contribution to the observables in question. In this chapter, we will review the CKM contribution to different microscopic P, CP-odd processes and their observable effects to EDMs measured in various systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Recently, it was pointed that tree level bound state effect at the second order in the weak interaction can generate nucleon EDM of \(O(10^{-31})e\,\)cm [17].

References

  1. M. Kobayashi, T. Maskawa, Prog. Theor. Phys. 49, 652 (1973)

    Article  ADS  Google Scholar 

  2. E.P. Shabalin, Yad. Fiz. 31, 1665 (1980) [Sov. J. Nucl. Phys. 31, 864 (1980)]

    Google Scholar 

  3. I.B. Khriplovich, Yad. Fiz. 44, 1019 (1986) [Sov. J. Nucl. Phys. 44, 659 (1986)]

    Google Scholar 

  4. A. Czarnecki, B. Krause, Phys. Rev. Lett. 78, 4339 (1997)

    Article  ADS  Google Scholar 

  5. E.P. Shabalin, Yad. Fiz. 28, 151 (1978) [Sov. J. Nucl. Phys. 28, 75 (1978)]

    Google Scholar 

  6. M.E. Pospelov, I.B. Khriplovich, Yad. Fiz. 53, 1030 (1991) [Sov. J. Nucl. Phys. 53, 638 (1991)]

    Google Scholar 

  7. M.J. Booth, hep-ph/9301293

    Google Scholar 

  8. J.P. Archambault, A. Czarnecki, M. Pospelov, Phys. Rev. D 70, 073006 (2004)

    Article  ADS  Google Scholar 

  9. S. Weinberg, Phys. Rev. Lett. 63, 2333 (1989)

    Article  ADS  Google Scholar 

  10. J. Ellis, M.K. Gaillard, Nucl. Phys. B 150, 141 (1979)

    Article  ADS  Google Scholar 

  11. I.B. Khriplovich, Phys. Lett. B 173, 193 (1986)

    Article  ADS  Google Scholar 

  12. I. Bigi, N.G. Uraltsev, Sov. Phys. JETP 100, 198 (1991)

    Google Scholar 

  13. I. Bigi, N.G. Uraltsev, Nucl. Phys. B 353, 321 (1991)

    Google Scholar 

  14. M.E. Pospelov, Phys. Lett. B 328, 441 (1994)

    Article  ADS  Google Scholar 

  15. D. Demir, M. Pospelov, A. Ritz, Phys. Rev. D 67, 015007 (2003)

    Article  ADS  Google Scholar 

  16. I.B. Khriplovich, A.R. Zhitnitsky, Phys. Lett. B 109, 490 (1982)

    Article  ADS  Google Scholar 

  17. T. Mannel, N. Uraltsev, Phys. Rev. D 85, 096002 (2012)

    Article  ADS  Google Scholar 

  18. B.F. Morel, Nucl. Phys. B 157, 23 (1979)

    Google Scholar 

  19. E.P. Shabalin, Yad. Fiz. 32, 443 (1980) [Sov. J. Nucl. Phys. 32, 228 (1980)]

    Google Scholar 

  20. D.V. Nanopoulos, A. Yildiz, P.H. Cox, Ann. Phys. 127, 126 (1980)

    Google Scholar 

  21. M.B. Gavela, A. Le Yaouanc, L. Oliver, O. Pene, J.-C. Raynal, T.N. Pham, Phys. Lett. B 109, 215 (1982)

    Google Scholar 

  22. X.-G. He, B. McKellar, Phys. Rev. D 46, 2131 (1992)

    Article  ADS  Google Scholar 

  23. O.P. Sushkov, V.V. Flambaum, I.B. Khriplovich, Zh. Eksp. Teor. Fiz. 87, 1521 (1984) [Sov. Phys. JETP 60, 873 (1984)]

    Google Scholar 

  24. J.F. Donoghue, B.R. Holstein, M.J. Musolf, Phys. Lett. B 196, 196 (1987)

    Article  ADS  Google Scholar 

  25. V.V. Flambaum, I.B. Khriplovich, O.P. Sushkov, Phys. Lett. B 162, 213 (1985)

    Google Scholar 

  26. V.V. Flambaum, I.B. Khriplovich, O.P. Sushkov, Nucl. Phys. A 449, 750 (1985)

    Google Scholar 

  27. X.-G. He, B.H.J. McKellar, S. Pakvasa, Phys. Lett. B 283, 348 (1992)

    Article  ADS  Google Scholar 

  28. J.J. Hudson et al., Nature 473, 493 (2011)

    Article  ADS  Google Scholar 

  29. P. Mueller et al., in 5th International conference on Fundamental Physics Using Atoms, Okayama University, October 2011 (URL: http://xqw.hep.okayama-u.ac.jp/kakenhi/index.php/fpua2011_home/fpua2011_top_e/)

  30. G.W. Bennett et al., (Muon (\(g-2\)) Collaboration), Phys. Rev. D 80, 052008 (2009)

    Google Scholar 

  31. I.B. Khriplovich, Phys. Lett. B 444, 98 (1998)

    Google Scholar 

  32. F.J.M. Farley et al., Phys. Rev. Lett. 93, 052001 (2004)

    Google Scholar 

  33. Y.K. Semertzidis et al., AIP Conf. Proc. 698, 200 (2004)

    Google Scholar 

  34. Y.F. Orlov, W.M. Morse, Y.K. Semertzidis, Phys. Rev. Lett. 96, 214802 (2006)

    Google Scholar 

  35. C.A. Baker et al., Phys. Rev. Lett. 97, 131801 (2006)

    Article  ADS  Google Scholar 

  36. M. Burghoff et al., arXiv:1110.1505 [nucl-ex]

    Google Scholar 

  37. B.C. Regan et al., Phys. Rev. Lett. 88, 071805 (2002)

    Article  ADS  Google Scholar 

  38. W.C. Griffith et al., Phys. Rev. Lett. 102, 101601 (2009)

    Article  ADS  Google Scholar 

  39. M.A. Rosenberry et al., Phys. Rev. Lett. 86, 22 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yamanaka .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Yamanaka, N. (2014). EDM in the Standard Model. In: Analysis of the Electric Dipole Moment in the R-parity Violating Supersymmetric Standard Model. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54544-6_9

Download citation

Publish with us

Policies and ethics