Skip to main content

Abstract

Optic neuritis (ON) is inflammation of the optic nerve and is the most common type of optic neuropathy. There is a strong association between ON and multiple sclerosis (MS), an acute inflammatory demyelinating syndrome of the central nervous system (CNS). A large number of etiological factors have been identified for ON including genetic susceptibility, smoking, exposure to the Epstein–Barr virus (EBV), and low exposure to sunlight. And the pathology of ON continues to be clarified with the advances in medicine and clinical peripheral devices. Since ON can cause severe visual loss, it draws much attention to detect the disease in early stage and finding a treatment that will restore visual function. In this chapter, the latest progress regarding the noninvasive detection methods for ON is summarized and current understanding of mechanisms underlying ON is reviewed, with references to MS. Lastly, existing drugs and chemicals that were developed for other therapeutic purposes are discussed as potential treatment strategies for ON.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Handel AE, Williamson AJ, Disanto G et al (2010) An updated meta-analysis of risk of multiple sclerosis following infectious mononucleosis. PLoS One. doi:10.1371/journal.pone.0012496

    Google Scholar 

  2. Islam T, Gauderman WJ, Cozen W et al (2007) Childhood sun exposure influences risk of multiple sclerosis in monozygotic twins. Neurology 69:381–388

    Article  PubMed  Google Scholar 

  3. Miller D, Barkhof F, Montalban X et al (2005) Clinically isolated syndromes suggestive of multiple sclerosis, part I: natural history, pathogenesis, diagnosis, and prognosis. Lancet Neurol 4:281–288

    Article  PubMed  Google Scholar 

  4. Frohman EM, Fujimoto JG, Frohman TC et al (2008) Optical coherence tomography: a window into the mechanisms of multiple sclerosis. Nat Clin Pract Neurol 4:664–675

    Article  PubMed Central  PubMed  Google Scholar 

  5. Optic Neuritis Study Group (2008) Multiple sclerosis risk after optic neuritis: final optic neuritis treatment trial follow-up. Arch Neurol 65:727–732. doi:10.1001/archneur.65.6.727

    Google Scholar 

  6. Marques IB, Matias F, Silva ED et al (2013) Risk of multiple sclerosis after optic neuritis in patients with normal baseline brain MRI. J Clin Neurosci. doi:10.1016/j.jocn.2013.06.013

    PubMed  Google Scholar 

  7. Mehrotra A, Jaffery N, Saxena R et al (2007) Comparative evaluation of megadose methylprednisolone with dexamethasone for treatment of primary typical optic neuritis. Indian J Ophthalmol 55:355–359

    Article  PubMed Central  PubMed  Google Scholar 

  8. Menon V, Saxena R, Misra R et al (2011) Management of optic neuritis. Indian J Ophthalmol 59:117–122. doi:10.4103/0301-4738.77020

    Article  PubMed Central  PubMed  Google Scholar 

  9. Balcer LJ (2006) Clinical practice. Optic neuritis. N Engl J Med 354:1273–1280

    Article  CAS  PubMed  Google Scholar 

  10. Tullman MJ, Lublin FD, Miller AE (2002) Immunotherapy of multiple sclerosis-current practice and future directions. J Rehabil Res Dev 39:273–285

    PubMed  Google Scholar 

  11. Wingerchuk DM, Lennon VA, Lucchinetti CF et al (2007) The spectrum of neuromyelitis optica. Lancet Neurol 6:805–815

    Article  CAS  PubMed  Google Scholar 

  12. Lennon VA, Kryzer TJ, Pittock SJ et al (2005) IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 202:473–477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Nielsen S, Nagelhus EA, Amiry-Moghaddam M et al (1997) Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 17:171–180

    CAS  PubMed  Google Scholar 

  14. Ratelade J, Zhang H, Saadoun S et al (2012) Neuromyelitis optica IgG and natural killer cells produce NMO lesions in mice without myelin loss. Acta Neuropathol 123:861–872. doi:10.1007/s00401-012-0986-4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Watanabe S, Nakashima I, Misu T et al (2007) Therapeutic efficacy of plasma exchange in NMO-IgG-positive patients with neuromyelitis optica. Mult Scler 13:128–132

    Article  CAS  PubMed  Google Scholar 

  16. Wang KC, Wang SJ, Lee CL et al (2011) The rescue effect of plasma exchange for neuromyelitis optica. J Clin Neurosci 18:43–46. doi:10.1016/j.jocn.2010.05.030

    Article  CAS  PubMed  Google Scholar 

  17. Cree BA, Lamb S, Morgan K et al (2005) An open label study of the effects of rituximab in neuromyelitis optica. Neurology 64:1270–1272

    Article  CAS  PubMed  Google Scholar 

  18. Garvin MK, Abràmoff MD, Wu X et al (2009) Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images. IEEE Trans Med Imaging 28:1436–1447. doi:10.1109/TMI.2009.2016958

    Article  PubMed Central  PubMed  Google Scholar 

  19. Sakata LM, Deleon-Ortega J, Sakata V et al (2009) Optical coherence tomography of the retina and optic nerve – a review. Clin Experiment Ophthalmol 37:90–99. doi:10.1111/j.1442-9071.2009.02015.x

    Article  PubMed  Google Scholar 

  20. Frohman EM, Fujimoto JG, Frohman TC et al (2008) Optical coherence tomography: a window into the mechanisms of multiple sclerosis. Nat Clin Pract Neurol 4:664–675. doi:10.1038/ncpneuro0950

    Article  PubMed Central  PubMed  Google Scholar 

  21. Monteiro ML, Fernandes DB, Apóstolos-Pereira SL et al (2012) Quantification of retinal neural loss in patients with neuromyelitis optica and multiple sclerosis with or without optic neuritis using Fourier-domain optical coherence tomography. Invest Ophthalmol Vis Sci 53:3959–3966. doi:10.1167/iovs.11-9324

    Article  PubMed  Google Scholar 

  22. Schneider E, Zimmermann H, Oberwahrenbrock T et al (2013) Optical coherence tomography reveals distinct patterns of retinal damage in neuromyelitis optica and multiple sclerosis. PLoS One 8:e66151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Sandberg MA, Ariel M (1977) A hand-held two channel stimulator ophthalmoscope. Arch Ophthalmol 95:1881–1882

    Article  CAS  PubMed  Google Scholar 

  24. Jones R, King–Smith PE, Loffing DH et al (1986) Stray light contributions to the focal electroretinogram (ERG). Clin Vis Sci 1:153–160

    Google Scholar 

  25. Sutter EE (1991) The fast m-transform: a fast computation of cross-correlations with binary m-sequences. Society Ind Appl Math 20:686–694

    Google Scholar 

  26. Sutter EE, Tran D (1992) The field topography of ERG components in man, I: the photopic luminance response. Vision Res 32:433–446

    Article  CAS  PubMed  Google Scholar 

  27. Hood DC, Seiple W, Holopigian K et al (1997) A comparison of the components of the multifocal and full-field ERGs. Vis Neurosci 14:533–544

    Article  CAS  PubMed  Google Scholar 

  28. Hasegawa S, Ohshima A, Hayakawa Y et al (2001) Multifocal electroretinograms in patients with branch retinal artery occlusion. Invest Ophthalmol Vis Sci 42:298–304

    CAS  PubMed  Google Scholar 

  29. Sutter EE, Bearse MA Jr (1999) The optic nerve head component of the human ERG. Vision Res 39:419–436

    Article  CAS  PubMed  Google Scholar 

  30. Ball SL, Petry HM (2000) Noninvasive assessment of retinal function in rats using multifocal electroretinography. Invest Ophthalmol Vis Sci 41:610–617

    CAS  PubMed  Google Scholar 

  31. Harada T, Harada C, Nakamura K et al (2007) The potential role of glutamate transporters in the pathogenesis of normal tension glaucoma. J Clin Invest 117:1763–1770

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Guo X, Harada C, Namekata K et al (2010) Regulation of the severity of neuroinflammation and demyelination by TLR-ASK1-p38 pathway. EMBO Mol Med 2:504–515. doi:10.1002/emmm.201000103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    Article  CAS  PubMed  Google Scholar 

  34. Beutler B, Rietschel ET (2003) Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol 3:169–176

    Article  CAS  PubMed  Google Scholar 

  35. Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2:675–680

    Article  CAS  PubMed  Google Scholar 

  36. Ponomarev ED, Shriver LP, Maresz K et al (2005) Microglial cell activation and proliferation precedes the onset of CNS autoimmunity. J Neurosci Res 81:374–389

    Article  CAS  PubMed  Google Scholar 

  37. Tanuma N, Sakuma H, Sasaki A et al (2006) Chemokine expression by astrocytes plays a role in microglia/macrophage activation and subsequent neurodegeneration in secondary progressive multiple sclerosis. Acta Neuropathol 112:195–204

    Article  CAS  PubMed  Google Scholar 

  38. Nair A, Frederick TJ, Miller SD (2008) Astrocytes in multiple sclerosis: a product of their environment. Cell Mol Life Sci 65:2702–2720. doi:10.1007/s00018-008-8059-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Fujihara K (2011) Neuromyelitis optica and astrocytic damage in its pathogenesis. J Neurol Sci 306:183–187. doi:10.1016/j.jns.2011.02.018

    Article  CAS  PubMed  Google Scholar 

  40. Hinson SR, Romero MF, Popescu BF et al (2012) Molecular outcomes of neuromyelitis optica (NMO)-IgG binding to aquaporin-4 in astrocytes. Proc Natl Acad Sci U S A 109:1245–1250. doi:10.1073/pnas.1109980108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Farez MF, Quintana FJ, Gandhi R et al (2009) Toll-like receptor 2 and poly(ADP-ribose) polymerase 1 promote central nervous system neuroinflammation in progressive EAE. Nat Immunol 10:958–964. doi:10.1038/ni.1775

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Kang Z, Altuntas CZ, Gulen MF et al (2010) Astrocyte-restricted ablation of interleukin-17-induced Act1-mediated signaling ameliorates autoimmune encephalomyelitis. Immunity 32:414–425. doi:10.1016/j.immuni.2010.03.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Skripuletz T, Bussmann JH, Gudi V et al (2010) Cerebellar cortical demyelination in the murine cuprizone model. Brain Pathol 20:301–312. doi:10.1111/j.1750-3639.2009.00271.x

    Article  CAS  PubMed  Google Scholar 

  44. Goritz C, Dias DO, Tomilin N et al (2011) A pericyte origin of spinal cord scar tissue. Science 333:238–242. doi:10.1126/science.1203165

    Article  PubMed  Google Scholar 

  45. Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:146–156

    Article  CAS  PubMed  Google Scholar 

  46. Kuhlmann T, Lingfeld G, Bitsch A et al (2002) Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain 125:2202–2212

    Article  PubMed  Google Scholar 

  47. Lucchinetti C, Brück W, Parisi J et al (1999) A quantitative analysis of oligodendrocytes in multiple sclerosis lesions: a study of 113 cases. Brain 122:2279–2295

    Article  PubMed  Google Scholar 

  48. Merrill JE, Zimmerman RP (1991) Natural and induced cytotoxicity of oligodendrocytes by microglia is inhibitable by TGFβ. Glia 4:327–331

    Article  CAS  PubMed  Google Scholar 

  49. Peterson JW, Bö L, Mörk S et al (2002) VCAM-1-positive microglia target oligodendrocytes at the border of multiple sclerosis lesions. J Neuropathol Exp Neurol 61:539–546

    PubMed  Google Scholar 

  50. Rasmussen S, Wang Y, Kivisäkk P et al (2007) Persistent activation of microglia is associated with neuronal dysfunction of callosal projecting pathways and multiple sclerosis-like lesions in relapsing–remitting experimental autoimmune encephalomyelitis. Brain 130:2816–2829

    Article  PubMed  Google Scholar 

  51. Heppner FL, Greter M, Marino D et al (2005) Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med 11:146–152

    Article  CAS  PubMed  Google Scholar 

  52. Ralay Ranaivo H, Craft JM, Hu W et al (2006) Glia as a therapeutic target: selective suppression of human amyloid-β-induced upregulation of brain proinflammatory cytokine production attenuates neurodegeneration. J Neurosci 26:662–670

    Article  PubMed  Google Scholar 

  53. Guo X, Nakamura K, Kohyama K et al (2007) Inhibition of glial cell activation ameliorates the severity of experimental autoimmune encephalomyelitis. Neurosci Res 59:457–466

    Article  CAS  PubMed  Google Scholar 

  54. Sloka S, Metz LM, Hader W et al (2013) Reduction of microglial activity in a model of multiple sclerosis by dipyridamole. J Neuroinflammation 10:89. doi:10.1186/1742-2094-10-89

    Article  PubMed Central  PubMed  Google Scholar 

  55. Yong VW, Wells J, Giuliani F et al (2004) The promise of minocycline in neurology. Lancet Neurol 3:744–751

    Article  PubMed  Google Scholar 

  56. Metz LM, Li D, Traboulsee A, GA/Minocycline Study Investigators et al (2009) Glatiramer acetate in combination with minocycline in patients with relapsing–remitting multiple sclerosis: results of a Canadian, multicenter, double-blind, placebo-controlled trial. Mult Scler 15:1183–1194. doi:10.1177/1352458509106779

    Article  CAS  PubMed  Google Scholar 

  57. Ichijo H, Nishida E, Irie K et al (1997) Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 275:90–94

    Article  CAS  PubMed  Google Scholar 

  58. Chiang E, Dang O, Anderson K et al (2006) Cutting edge: apoptosis-regulating signal kinase 1 is required for reactive oxygen species-mediated activation of IFN regulatory factor 3 by lipopolysaccharide. J Immunol 176:5720–5724

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Matsuzawa A, Saegusa K, Noguchi T et al (2005) ROS-dependent activation of the TRAF6-ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity. Nat Immunol 6:587–592

    Article  CAS  PubMed  Google Scholar 

  60. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511

    Article  CAS  PubMed  Google Scholar 

  61. Harada C, Nakamura K, Namekata K et al (2006) Role of apoptosis signal-regulating kinase 1 in stress-induced neural cell apoptosis in vivo. Am J Pathol 168:261–269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Steinman L (2004) Immune therapy for autoimmune diseases. Science 305:212–216

    Article  CAS  PubMed  Google Scholar 

  63. Paul SM, Mytelka DS, Dunwiddie CT et al (2010) How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 9:203–214. doi:10.1038/nrd3078

    CAS  PubMed  Google Scholar 

  64. Gilgun-Sherki Y, Melamed E, Offen D (2004) The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J Neurol 251:261–268

    Article  CAS  PubMed  Google Scholar 

  65. Kizelsztein P, Ovadia H, Garbuzenko O et al (2009) Pegylated nanoliposomes remote-loaded with the antioxidant tempamine ameliorate experimental autoimmune encephalomyelitis. J Neuroimmunol 213:20–25. doi:10.1016/j.jneuroim.2009.05.019

    Article  CAS  PubMed  Google Scholar 

  66. Mohamed A, Waris HM, Ramadan H et al (2009) Amelioration of chronic relapsing experimental autoimmune encephalomyelitis (cr-eae) using thymoquinone. Biomed Sci Instrum 45:274–279

    CAS  PubMed  Google Scholar 

  67. Qi X, Lewin AS, Sun L et al (2007) Suppression of mitochondrial oxidative stress provides long-term neuroprotection in experimental optic neuritis. Invest Ophthalmol Vis Sci 48:681–691

    Article  PubMed  Google Scholar 

  68. Ooie T, Takahashi N, Saikawa T et al (2001) Single oral dose of geranylgeranylacetone induces heatshock protein 72 and renders protection against ischemia/reperfusion injury in rat heart. Circulation 104:1837–1843

    Article  CAS  PubMed  Google Scholar 

  69. Katsuno M, Sang C, Adachi H et al (2005) Pharmacological induction of heat-shock proteins alleviates polyglutamine-mediated motor neuron disease. Proc Natl Acad Sci USA 102:16801–16806

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Harada C, Nakamura K, Guo X et al (2007) Neuroprotective effect of geranylgeranylacetone against ischemia-induced retinal injury. Mol Vis 13:1601–1607

    CAS  PubMed  Google Scholar 

  71. Igarashi K, Kashiwagi K (2010) Modulation of cellular function by polyamines. Int J Biochem Cell Biol 42:39–51. doi:10.1016/j.biocel.2009.07.009

    Article  CAS  PubMed  Google Scholar 

  72. Deng K, He H, Qiu J et al (2009) Increased synthesis of spermidine as a result of upregulation of arginase I promotes axonal regeneration in culture and in vivo. J Neurosci 29:9545–9552. doi:10.1523/JNEUROSCI.1175-09.2009

    Article  CAS  PubMed  Google Scholar 

  73. Rider JE, Hacker A, Mackintosh CA et al (2007) Spermine and spermidine mediate protection against oxidative damage caused by hydrogen peroxide. Amino Acids 33:231–240

    Article  CAS  PubMed  Google Scholar 

  74. Eisenberg T, Knauer H, Schauer A et al (2009) Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11:1305–1314. doi:10.1038/ncb233

    Article  CAS  PubMed  Google Scholar 

  75. Guo X, Harada C, Namekata K et al (2009) Effect of geranylgeranylacetone on optic neuritis in experimental autoimmune encephalomyelitis. Neurosci Lett 462:281–285. doi:10.1016/j.neulet.2009.07.028

    Article  CAS  PubMed  Google Scholar 

  76. Guo X, Harada C, Namekata K et al (2011) Spermidine alleviates severity of murine experimental autoimmune encephalomyelitis. Invest Ophthalmol Vis Sci 52:2696–2703. doi:10.1167/iovs.10-6015

    Article  CAS  PubMed  Google Scholar 

  77. Park HS, Cho SG, Kim CK et al (2002) Heat shock protein hsp72 is a negative regulator of apoptosis signal-regulating kinase 1. Mol Cell Biol 22:7721–7730

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Franklin RJ, Ffrench-Constant C (2008) Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci 9:839–855. doi:10.1038/nrn2480

    Article  CAS  PubMed  Google Scholar 

  79. Kremer D, Aktas O, Hartung HP et al (2011) The complex world of oligodendroglial differentiation inhibitors. Ann Neurol 69:602–618. doi:10.1002/ana.22415

    Article  CAS  PubMed  Google Scholar 

  80. Chang A, Tourtellotte WW, Rudick R et al (2002) Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med 346:165–173

    Article  PubMed  Google Scholar 

  81. Kuhlmann T, Miron V, Cui Q et al (2008) Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 131:1749–1758. doi:10.1093/brain/awn096

    Article  CAS  PubMed  Google Scholar 

  82. Deshmukh VA, Tardif V, Lyssiotis CA et al (2013) A regenerative approach to the treatment of multiple sclerosis. Nature 502:327–332. doi:10.1038/nature12647

    Article  CAS  PubMed  Google Scholar 

  83. Burgyone K, Aduri K, Ananth J et al (2004) The use of antiparkinsonian agents in the management of drug-induced extrapyramidal symptoms. Curr Pharm Des 10:2239–2248

    Article  CAS  PubMed  Google Scholar 

  84. Arnett HA, Fancy SP, Alberta JA et al (2004) bHLH transcription factor Olig1 is required to repair demyelinated lesions in the CNS. Science 306:2111–2115

    Article  CAS  PubMed  Google Scholar 

  85. Guo X, Harada C, Namekata K et al (2010) Delayed onset of experimental autoimmune encephalomyelitis in Olig1 deficient mice. PLoS One 9:e13083. doi:10.1371/journal.pone.0013083

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Guo, X. (2014). Optic Neuritis. In: Nakazawa, T., Kitaoka, Y., Harada, T. (eds) Neuroprotection and Neuroregeneration for Retinal Diseases. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54965-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54965-9_21

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54964-2

  • Online ISBN: 978-4-431-54965-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics