Skip to main content

Synaptic Vesicle Pools: Classical and Emerging Roles

  • Chapter
  • First Online:
Presynaptic Terminals

Abstract

Synaptic vesicles display a marked functional specialisation that warrants the definition of the so-called synaptic vesicle pools. In the classical three-pool model, the readily releasable pool (1–2 % of all vesicles) provides fast initial neurotransmitter release, the recycling pool (10–20 %) maintains release during physiological levels of stimulation, and the reserve pool (~80 %) is inert in terms of neurotransmitter release under physiological stimulation. But this classification according to release propensity does not convey the whole range of functional versatility of synaptic vesicles. Recent research has demonstrated that the release-incompetent reserve pool may act as a buffer for soluble proteins essential to synaptic vesicle recycling. Furthermore, new pool concepts have been proposed which illustrate several emerging aspects of synaptic vesicle pool physiology. A super-pool of vesicles is exchanged between synapses, with potential implications for synaptic plasticity. A surface or readily retrievable pool of synaptic vesicles decorates the membrane of synaptic boutons and may be essential for maintaining the recycling pool through rapid compensatory endocytosis. Recent data on the pool of spontaneously releasing vesicles suggests that there may be more functional and molecular heterogeneity among synaptic vesicles than anticipated. Finally, understanding the regulation of pool transitions remains a largely unresolved issue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alabi ARA, Tsien RW (2012) Synaptic vesicle pools and dynamics. Cold Spring Harb Perspect Biol 4:a013680

    PubMed Central  PubMed  Google Scholar 

  • Andreae LC, Fredj NB, Burrone J (2012) Independent vesicle pools underlie different modes of release during neuronal development. J Neurosci 32(5):1867–1874

    CAS  PubMed  Google Scholar 

  • Bal M, Leitz J, Reese AL, Ramirez DMO, Durakoglugil M, Herz J, Monteggia LM, Kavalali ET (2013) Reelin mobilizes a VAMP7-dependent synaptic vesicle pool and selectively augments spontaneous neurotransmission. Neuron 80:934–946

    CAS  PubMed  Google Scholar 

  • Balaji J, Ryan TA (2007) Single-vesicle imaging reveals that synaptic vesicle exocytosis and endocytosis are coupled by a single stochastic mode. Proc Natl Acad Sci U S A 104:20576–20581

    CAS  PubMed Central  PubMed  Google Scholar 

  • Benfenati F, Bähler M, Jahn R, Greengard P (1989) Interaction of synapsin I with small synaptic vesicles: distinct sites in synapsin I bind to vesicle phospholipids and vesicle proteins. J Cell Biol 108:1863–1872

    CAS  PubMed  Google Scholar 

  • Betz WJ, Henkel AW (1994) Okadaic acid disrupts clusters of synaptic vesicles in frog motor nerve terminals. J Cell Biol 124(5):843–854

    CAS  PubMed  Google Scholar 

  • Birks R, MacIntosh FC (1961) Acetylcholine metabolism of a sympathetic ganglion. Can J Biochem Physiol 39:787–827

    CAS  Google Scholar 

  • Blondeau F, Ritter B, Allaire PD, Wasiak S, Girard M, Hussain NK, Angers A, Legendre-Guillemin V, Roy L, Boismenu D, Kearney RE, Bell AW, Bergeron JJ, McPherson PS (2004) Tandem MS analysis of brain clathrin-coated vesicles reveals their critical involvement in synaptic vesicle recycling. Proc Natl Acad Sci U S A 101(11):3833–3838

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bonanomi D, Benfenati F, Valtorta F (2006) Protein sorting in the synaptic vesicle life cycle. Prog Neurobiol 80:177–217

    CAS  PubMed  Google Scholar 

  • Burgo A, Proux-Gillardeaux V, Sotirakis E, Bun P, Casano A, Veraes A, Liem RKH, Formstecher E, Coppey-Moisan M, Galli T (2012) A molecular network for the transport of the TI-VAMP/VAMP7 vesicles from cell center to periphery. Dev Cell 23:166–180

    CAS  PubMed  Google Scholar 

  • Ceccarelli B, Hurlbut WP (1980) Vesicle hypothesis of the release of quanta of acetylcholine. Phys Rev 60(2):396–440

    CAS  Google Scholar 

  • Ceccarelli B, Hurlbut WP, Mauro A (1973) Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. J Cell Biol 57:499–524

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cesca F, Baldelli P, Valtorta F, Benfenati F (2010) The synapsins: key actors of synapse function and plasticity. Prog Neurobiol 91:313–348

    CAS  PubMed  Google Scholar 

  • Chi P, Greengard P, Ryan TA (2001) Synapsin dispersion and reclustering during synaptic activity. Nat Neurosci 4(12):1187–1193

    CAS  PubMed  Google Scholar 

  • Choi BJ, Imlach WL, Jiao W, Wolfram V, Wu Y, Grbic M, Cela C, Baines RA, Nitabach MN, McCabe BD (2014) Miniature neurotransmission regulates Drosophila synaptic structural maturation. Neuron 82:618–634

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chung C, Barylko B, Leitz J, Liu X, Kavalali ET (2010) Acute dynamin inhibition dissects synaptic vesicle recycling pathways that drive spontaneous and evoked neurotransmission. J Neurosci 30(4):1363–1376

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cocucci E, Aguet F, Boulant S, Kirchausen T (2012) The first five seconds in the life of a clathrin-coated pit. Cell 150:495–507

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cohen LD, Zuchman R, Sorokina O, Müller A, Dietrich DC, Armstrong JD, Ziv T, Ziv NE (2013) Metabolic turnover of synaptic proteins: kinetics, interdependencies and implications for synaptic maintenance. PLoS One 8(5):e63191

    CAS  PubMed Central  PubMed  Google Scholar 

  • Collingridge GL, Peineau S, Howland JG, Wang YT (2010) Long-term depression in the CNS. Nat Rev Neurosci 11:459–473

    CAS  PubMed  Google Scholar 

  • Darcy KJ, Staras K, Collinson LM, Goda Y (2006) Constitutive sharing of recycling synaptic vesicles between presynaptic boutons. Nat Neurosci 9(3):315–321

    CAS  PubMed  Google Scholar 

  • de Jong APH, Verhage M (2009) Presynaptic signal transduction pathways that modulate synaptic transmission. Curr Opin Neurobiol 19:245–253

    PubMed  Google Scholar 

  • de Lange RP, De Roos AD, Borst JG (2003) Two modes of vesicle recycling in the rat calyx of Held. J Neurosci 23:10164–10173

    PubMed  Google Scholar 

  • de Robertis EDP, Bennet HS (1955) Some features of the submicroscopic morphology of synapses in frog and earthworm. J Biophys Biochem Cytol 1(1):47–58

    PubMed Central  Google Scholar 

  • del Castillo JB, Katz B (1954) Quantal components of the end-plate potential. J Physiol 124:560–573

    PubMed Central  Google Scholar 

  • del Castillo JB, Katz B (1956) Biophysical aspects of neuromuscular transmission. Prog Biophys Biophys Chem 6:121–170

    Google Scholar 

  • Delgado R, Maureira C, Oliva C, Kidokoro Y, Labarca P (2000) Size of vesicle pools, rates of mobilization, and recycling at neuromuscular synapses of a drosophila mutant, shibire. Neuron 28:941–953

    CAS  PubMed  Google Scholar 

  • Denker A, Rizzoli SO (2010) Synaptic vesicle pools: an update. Front Synaptic Neurosci 2:135

    PubMed Central  PubMed  Google Scholar 

  • Denker A, Kröhnert K, Rizzoli SO (2009) Revisiting synaptic vesicle pool localization in the Drosophila neuromuscular junction. J Physiol 587(12):2919–2926

    CAS  PubMed Central  PubMed  Google Scholar 

  • Denker A, Bethani I, Kröhnert K, Körber C, Horstmann H, Wilhelm BG, Barysch SV, Kuner T, Neher E, Rizzoli SO (2011a) A small pool of vesicles maintains synaptic activity in vivo. Proc Natl Acad Sci U S A 108(41):17177–17182

    CAS  PubMed Central  PubMed  Google Scholar 

  • Denker A, Kröhnert K, Bückers J, Neher E, Rizzoli SO (2011b) The reserve pool of synaptic vesicles acts as a buffer for proteins involved in synaptic vesicle recycling. Proc Natl Acad Sci U S A 108(41):17183–17188

    CAS  PubMed Central  PubMed  Google Scholar 

  • Diril MK, Wienisch M, Jung N, Klingauf J, Haucke V (2006) Stonin 2 is an AP-2-dependent endocytic sorting adaptor for synaptotagmin internalization and recycling. Dev Cell 10(2):233–244

    CAS  PubMed  Google Scholar 

  • Elmqvist D, Quastel DMJ (1965) A quantitative study of endplate potentials in isolated human muscle. J Physiol Lond 178:505–529

    CAS  PubMed Central  PubMed  Google Scholar 

  • Emptage NJ, Reid CA, Fine A, Bliss TVP (2003) Optical quantal analysis reveals a presynaptic component of LTP at hippocampal Schaffer-associational synapses. Neuron 38:797–804

    CAS  PubMed  Google Scholar 

  • Enoki R, Hu Y, Hamilton D, Fine A (2009) Expression of long-term plasticity at individual synapses in hippocampus is graded, bidirectional, and mainly presynaptic: optical quantal analysis. Neuron 62:242–253

    CAS  PubMed  Google Scholar 

  • Fatt P, Katz B (1950) Some observations on biological noise. Nature 166:597–598

    CAS  PubMed  Google Scholar 

  • Fatt P, Katz B (1952) Spontaneous subthreshold activity at motor nerve endings. J Physiol 117:109–128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fernández-Alfonso T, Ryan TA (2008) A heterogeneous “resting” pool of synaptic vesicles is dynamically interchanged across boutons in mammalian CNS synapses. Brain Cell Biol 36:87–100

    PubMed Central  PubMed  Google Scholar 

  • Fernández-Alfonso T, Kwan R, Ryan TA (2006) Synaptic vesicles interchange their membrane proteins with a large surface reservoir during recycling. Neuron 51(2):179–186

    PubMed  Google Scholar 

  • Fischer von Mollard G, Stevens TH (1998) A human homolog can functionally replace the yeast vesicle-associated SNARE Vti1p in two vesicle transport pathways. J Biol Chem 273:2624–2630

    CAS  PubMed  Google Scholar 

  • Flowerdew SE, Burgoyne RD (2009) A VAMP7/Vti1a SNARE complex distinguishes a non-conventional traffic route to the cell surface used by KChIP1 and Kv4 potassium channels. Biochem J 418:529–540

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fornasiero EF, Bonanomi D, Benfenati F, Valtorta F (2009) The role of synapsins in neuronal development. Cell Mol Life Sci 67:1383–1396

    PubMed  Google Scholar 

  • Fornasiero EF, Raimondi A, Guarnieri FC, Orlando M, Fesce R, Benfenati F, Valtorta F (2012) Synapsins contribute to the dynamic spatial organization of synaptic vesicles in an activity-dependent manner. J Neurosci 32(35):12214–12227

    CAS  PubMed  Google Scholar 

  • Fredj NB, Burrone J (2009) A resting pool of vesicles is responsible for spontaneous vesicle fusion at the synapse. Nat Neurosci 12:751–758

    PubMed Central  PubMed  Google Scholar 

  • Friedman HV, Bresler T, Garner CC, Ziv NE (2000) Assembly of new individual excitatory synapses: time course and temporal order of synaptic molecule recruitment. Neuron 27:57–59

    CAS  PubMed  Google Scholar 

  • Gaffield MA, Rizzoli SO, Betz WJ (2006) Mobility of synaptic vesicles in different pools in resting and stimulated frog motor nerve terminals. Neuron 51(3):317–325

    CAS  PubMed  Google Scholar 

  • Gandhi SP, Stevens CF (2003) Three modes of synaptic vesicular recycling by single-vesicle imaging. Nature 423:607–613

    CAS  PubMed  Google Scholar 

  • Ganley IG, Espinosa E, Pfeffer SR (2008) A syntaxin 10-SNARE complex distinguishes two distinct transport routes from endosomes to the trans-Golgi in human cells. J Cell Biol 180(1):159–172

    CAS  PubMed Central  PubMed  Google Scholar 

  • Granseth B, Odermatt B, Royle SJ, Lagnado L (2006) Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron 51:773–786

    CAS  PubMed  Google Scholar 

  • Greengard P, Valtorta F, Czernik AJ, Benfenati F (1993) Synaptic vesicle phosphoproteins and regulation of synaptic function. Science 259:780–785

    CAS  PubMed  Google Scholar 

  • Groemer TW, Klingauf J (2007) Synaptic vesicles recycling spontaneously and during activity belong to the same vesicle pool. Nat Neurosci 10:145–147

    CAS  PubMed  Google Scholar 

  • Hannah MJ, Schmidt AA, Huttner WB (1999) Synaptic vesicle biogenesis. Annu Rev Cell Dev Biol 15:733–798

    CAS  PubMed  Google Scholar 

  • Hanse E, Gustafsson B (2001) Vesicle release probability and pre­primed pool at glutamatergic synapses in area CA1 of the rat neonatal hippocampus. J Physiol 531(2):481–493

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harata N, Pyle JL, Aravanis AM, Mozhayeva M, Kavalali ET, Tsien RW (2001a) Limited Numbers of recycling vesicles in small CNS nerve terminals: implications for neural signaling and vesicular cycling. Trends Neurosci 24:637–643

    CAS  PubMed  Google Scholar 

  • Harata N, Ryan TA, Smith SJ, Buchanan J, Tsien RW (2001b) Visualizing recycling synaptic vesicles in hippocampal neurons by FM 1–43 photoconversion. Proc Natl Acad Sci U S A 98:12748–12753

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harlow ML, Szule JA, Xu J, Jung JH, Marshall RM, McMahan UJ (2013) Alignment of synaptic vesicle macromolecules with the macromolecules in active zone material that direct vesicle docking. PLoS One 8(7):e69410

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heuser JE, Reese TS (1973) Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol 57:315–344

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ho VM, Lee JA, Martin KC (2011) The cell biology of synaptic plasticity. Science 334:623–628

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoopmann P, Punge A, Barysch SV, Westphal V, Bückers J, Opazo F, Bethani I, Lauterbach MA, Hell SW, Rizzoli SO (2010) Endosomal sorting of readily releasable synaptic vesicles. Proc Natl Acad Sci U S A 107(44):19055–19060

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hua Y, Sinha R, Thiel CS, Schmidt R, Hüve J, Martens H, Hell SW, Egner A, Klingauf J (2011a) A readily retrievable pool of synaptic vesicles. Nat Neurosci 14(7):833–839

    CAS  PubMed  Google Scholar 

  • Hua Z, Leal-Ortiz S, Foss SM, Waites CL, Garner CC, Voglmaier SM, Edwards RH (2011b) v-SNARE composition distinguishes synaptic vesicle pools. Neuron 71:474–487

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jahn R, Südhof T (1994) Synaptic vesicles and exocytosis. Annu Rev Neurosci 17:219–246

    CAS  PubMed  Google Scholar 

  • Jin Y, Garner CC (2008) Molecular mechanisms of presynaptic differentiation. Annu Rev Cell Dev Biol 24:237–262

    CAS  PubMed  Google Scholar 

  • Kamin D, Lauterbach MA, Westphal V, Keller J, Schönle A, Hell SW, Rizzoli SO (2010) High- and low-mobility stages in the synaptic vesicle cycle. Biophys J 99:675–684

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kerchner GA, Nicoll RA (2008) Silent synapses and the emergence of a postsynaptic mechanism for LTP. Nat Rev Neurosci 9:813–825

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim SH, Ryan TA (2010) CDK5 serves as a major control point in neurotransmitter release. Neuron 67(5):797–809

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kononekno NL, Diril MK, Puchkov D, Kintscher M, Koo JS, Pfuhl G, Winter Y, Wienisch M, Klingauf J, Breustedt J, Schmitz D, Maritzen T, Haucke V (2013) Compromised fidelity of endocytic synaptic vesicle protein sorting in the absence of stonin 2. Proc Natl Acad Sci U S A 110(6):E526–E535

    Google Scholar 

  • Koo JS, Markovic S, Puchkov D, Mahrenholz CC, Beceren-Braun F, Maritzen T, Dernedde J, Volkmer R, Oschkinat H, Haucke V (2011) SNARE motif-mediated sorting of synaptobrevin by the endocytic adaptors clathrin assembly lymphoid myeloid leukemia (CALM) and AP180 at synapses. Proc Natl Acad Sci U S A 108(33):13540–13545

    CAS  PubMed Central  PubMed  Google Scholar 

  • Körber C, Horstmann H, Sätzler K, Kuner T (2012) Endocytic structures and synaptic vesicle recycling at a central synapse in awake rats. Traffic 13(12):1601–1611

    PubMed  Google Scholar 

  • Krabben L, Fassio A, Bhati VK, Pechstein A, Onofri F, Fadda M, Messa M, Rao Y, Shupliakov O, Stamou D, Benfenati F, Haucke V (2011) Synapsin I senses membrane curvature by an amphipathic lipid packing sensor motif. J Neurosci 31(49):18149–18154

    CAS  PubMed  Google Scholar 

  • Kraszewski K, Mundigl O, Daniell L, Verderio C, Matteoli M, De Camilli P (1995) Synaptic vesicle dynamics in living cultured hippocampal neurons visualized with CY3-conjugated antibodies directed against the lumenal domain of synaptotagmin. J Neurosci 15(6):4328–4342

    CAS  PubMed  Google Scholar 

  • Kuromi H, Kidokoro Y (1998) Two distinct pools of synaptic vesicles in single presynaptic boutons in a temperature-sensitive Drosophila mutant, shibire. Neuron 20:917–925

    CAS  PubMed  Google Scholar 

  • Kuromi H, Kidokoro Y (2000) Tetanic stimulation recruits vesicles from reserve pool via a cAMP-mediated process in drosophila synapses. Neuron 27:133–143

    CAS  PubMed  Google Scholar 

  • Li Z, Murthy VN (2001) Visualizing postendocytic traffic of synaptic vesicles at hippocampal synapses. Neuron 31:593–605

    CAS  PubMed  Google Scholar 

  • Marra V, Burden JJ, Thorpe JR, Smith IT, Smith SL, Häusser M, Branco T, Staras K (2012) A preferentially segregated recycling vesicle pool of limited size supports neurotransmission in native central synapses. Neuron 76(3):579–589

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mathew SS, Pozzo-Miller L, Hablitz JJ (2008) Kainate modulates presynaptic GABA release from two vesicle pools. J Neurosci 28(3):725–773

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mayford M, Siegelbaum SA, Kandel ER (2012) Synapses and memory storage. Cold Spring Harb Perspect Biol 4:a00575

    Google Scholar 

  • McKinney RA, Capogna M, Dürr R, Gähweiler BH, Thompson SM (1999) Miniature synaptic events maintain dendritic spines via AMPA receptor activation. Nat Neurosci 2(1):44–49

    CAS  PubMed  Google Scholar 

  • Mitter D, Reisinger C, Hinz B, Hollmann S, Yelmanchili SV, Treiber-Held S, Ohm TG, Herrmann A, Ahnert-Hilger G (2003) The synaptophysin/synaptobrevin interaction critically depends on cholesterol content. J Neurochem 84:35–42

    CAS  PubMed  Google Scholar 

  • Molenaar PC, Nickolson VJ, Polak RL (1973a) Preferential release of newly synthesized 3H-acetylcholine from rat cerebral cortex slices in vitro. Br J Pharm 47:97–108

    CAS  Google Scholar 

  • Molenaar PC, Polak RL, Nickolson VJ (1973b) Subcellular localization of newly-formed [3H]acetylcholine in rat cerebral cortex in vitro. J Neurochem 21:667–678

    CAS  Google Scholar 

  • Molgo J, Pecot-Dechavassine M (1988) Effects of carbonyl cyanide m-chlorophenylhydrazone on quantal transmitter release and ultrastructure of frog motor nerve terminals. Neuroscience 24:695–708

    CAS  PubMed  Google Scholar 

  • Morciano M, Burre J, Corvey C, Karas M, Zimmermann H, Volknandt W (2005) Immunoisolation of two synaptic vesicle pools from synaptosomes: a proteomics analysis. J Neurochem 95(6):1732–1745

    CAS  PubMed  Google Scholar 

  • Morgan JR, Comstra HS, Cohen M, Faundez V (2013) Presynaptic membrane retrieval and endosome biology: defining molecularly heterogeneous synaptic vesicles. Cold Spring Harb Perspect Biol 5:a016915

    PubMed  Google Scholar 

  • Murthy VN, Stevens CF (1998) Synaptic vesicles retain their identity through the endocytic cycle. Nature 392:497–501

    CAS  PubMed  Google Scholar 

  • Neves G, Lagnado L (1999) The kinetics of exocytosis and endocytosis in the synaptic terminal of goldfish retinal bipolar cells. J Physiol 515(1):181–202

    CAS  PubMed Central  PubMed  Google Scholar 

  • Opazo F, Punge A, Bückers J, Hoopmann P, Kastrup L, Hell SW, Rizzoli SO (2010) Limited intermixing of synaptic vesicle components upon vesicle recycling. Traffic 11:800–812

    CAS  PubMed  Google Scholar 

  • Orenbuch A, Shalev L, Marra V, Sinai I, Lavy Y, Kahn J, Burden JJ, Staras K, Gitler D (2012) Synapsin selectively controls the mobility of resting pool vesicles at hippocampal terminals. J Neurosci 32(12):3969–3980

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paillart C, Li J, Matthews G, Sterling P (2003) Endocytosis and vesicle recycling at a ribbon synapse. J Neurosci 23:4092–4099

    CAS  PubMed  Google Scholar 

  • Palade GE, Palay SL (1954) Electron microscope observations of interneuronal and neuromuscular synapses. Anat Rec 118:335–336

    Google Scholar 

  • Palay SL (1956) Synapses in the central nervous system. J Biophys Biochem Cytol 2(4):193–202

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pechstein A, Shupliakov O (2010) Taking a back seat: synaptic vesicle clustering in presynaptic terminals. Front Synaptic Neurosci 2:143

    PubMed Central  PubMed  Google Scholar 

  • Pieribone VA, Shupliakov O, Brodin L, Hilfiker-Rothenfluh S, Czernik AJ, Greengard P (1995) Distinct pools of synaptic vesicles in neurotransmitter release. Nature 375:493–497

    CAS  PubMed  Google Scholar 

  • Poulton J, Chiaratti MR, Meirelles FV, Kennedy S, Wells D, Holt IJ (2010) Transmission of mitochondrial DNA diseases and ways to prevent them. PLoS Genet 6(8):e1001066

    PubMed Central  PubMed  Google Scholar 

  • Ramirez DMO, Khvotchev M, Trauterman B, Kavalali ET (2012) Vti1a identifies a vesicle pool that preferentially recycles at rest and maintains spontaneous neurotransmission. Neuron 73:121–134

    CAS  PubMed Central  PubMed  Google Scholar 

  • Revelo NH, Kamin D, Truckenbrodt S, Wong AB, Reuter-Jessen K, Reisinger E, Moser T, Rizzoli SO (2014) A new probe for super-resolution imaging of membranes elucidates trafficking pathways. J Cell Biol 205(4):591–606

    CAS  PubMed Central  PubMed  Google Scholar 

  • Richards DA, Guatimosim C, Betz WJ (2000) Two endocytic recycling routes selectively fill two vesicle pools in frog motor nerve terminals. Neuron 27:551–559

    CAS  PubMed  Google Scholar 

  • Richards DA, Guatimosim C, Rizzoli SO, Betz WJ (2003) Synaptic vesicle pools at the frog neuromuscular junction. Neuron 39:529–541

    CAS  PubMed  Google Scholar 

  • Rizzoli SO (2014) Synaptic vesicle recycling: steps and principles. EMBO J 33(8):788–822

    CAS  PubMed  Google Scholar 

  • Rizzoli SO, Betz WJ (2004) The structural organization of the readily releasable pool of synaptic vesicles. Science 303:2037–2039

    CAS  PubMed  Google Scholar 

  • Rizzoli SO, Betz WJ (2005) Synaptic vesicle pools. Nat Rev Neurosci 6:57–69

    CAS  PubMed  Google Scholar 

  • Rizzoli SO, Jahn R (2007) Kiss-and-run, collapse and ‘readily retrievable’ vesicles. Traffic 8(9):1137–1144

    CAS  PubMed  Google Scholar 

  • Rose T, Schoenenberger P, Jezek K, Oertner TG (2013) Developmental refinement of vesicle cycling at Schaffer collateral synapses. Neuron 6:1109–1121

    Google Scholar 

  • Sabo SL, Gomes RA, McAllister AK (2006) Formation of presynaptic terminals at predefined sites along axons. J Neurosci 26:10813–10825

    CAS  PubMed  Google Scholar 

  • Saitoe M, Schwarz TL, Umbach JA, Gundersen CB, Kidokoro Y (2001) Absence of junctional glutamate receptor clusters in drosophila mutants lacking spontaneous transmitter release. Science 293:514–517

    CAS  PubMed  Google Scholar 

  • Saka S, Rizzoli SO (2012) Super-resolution imaging prompts re-thinking of cell biology mechanisms. Bioessays 34:386–395

    PubMed  Google Scholar 

  • Sakaba T, Neher E (2001) Calmodulin mediates rapid recruitment of fast-releasing synaptic vesicles at a calyx-type synapse. Neuron 23:821–832

    Google Scholar 

  • Sankaranarayanan S, Ryan TA (2000) Real-time measurements of vesicle-SNARE recycling in synapses of the central nervous system. Nat Cell Biol 2:197–204

    CAS  PubMed  Google Scholar 

  • Sankaranarayanan S, de Angelis D, Rothman JE, Ryan TA (2000) The use of pHluorins for optical measurements of presynaptic activity. Biophys J 79:2199–2208

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sara Y, Virmani T, Deák F, Liu X, Kavalali ET (2005) An isolated pool of vesicles recycles at rest and drives spontaneous neurotransmission. Neuron 45(4):563–573

    CAS  PubMed  Google Scholar 

  • Schikorski T, Stevens CF (1997) Quantitative ultrastructural analysis of hippocampal excitatory synapses. J Neurosci 17:5858–5867

    CAS  PubMed  Google Scholar 

  • Schikorski T, Stevens CF (2001) Morphological correlates of functionally defined synaptic vesicle populations. Nat Neurosci 4(4):391–395

    CAS  PubMed  Google Scholar 

  • Shupliakov O (2009) The synaptic vesicle cluster: a source of endocytic proteins during neurotransmitter release. Neuroscience 158:204–210

    CAS  PubMed  Google Scholar 

  • Siksou L, Rostaing P, Lechaire JP, Boudier T, Ohtsuka T, Fejtova A, Kao HT, Greengard P, Gundelfinger ED, Triller A, Marty S (2007) Three-dimensional architecture of presynaptic terminal cytomatrix. J Neurosci 27:6868–6877

    CAS  PubMed  Google Scholar 

  • Staras K, Branco T (2010) Sharing vesicles between central presynaptic terminals: implications for synaptic function. Front Synaptic Neurosci 2(20)

    Google Scholar 

  • Staras K, Branco T, Burden JJ, Pozo K, Darcy K, Marra V, Ratnayaka A, Goda Y (2010) A vesicle superpool spans multiple presynaptic terminals in hippocampal neurons. Neuron 66:37–44

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stevens CF, Wang Y (1995) Facilitation and depression at single central synapses. Neuron 14:795–802

    CAS  PubMed  Google Scholar 

  • Stevens CF, Williams JH (2007) Discharge of the readily releasable pool with action potentials at hippocampal synapses. J Neurophysiol 98:3221–3229

    PubMed Central  PubMed  Google Scholar 

  • Stevens RJ, Akbergenova Y, Jorquera RA, Littleton JT (2012) Abnormal synaptic vesicle biogenesis in drosophila synaptogyrin mutants. J Neurosci 35(50):18054–18067

    Google Scholar 

  • Südhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547

    PubMed  Google Scholar 

  • Sutton AM, Ito HT, Cressy P, Kempf C, Woo JC, Schuman EM (2006) Miniature neurotransmission stabilizes synaptic function via tonic suppression of local dendritic protein synthesis. Cell 125:785–799

    CAS  PubMed  Google Scholar 

  • Takamori S, Holt M, Stenius K, Lemke EA, Grønborg M, Riedel D, Urlaub H, Schenck S, Brügger B, Ringler P, Müller SA, Rammner B, Gräter F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmüller H, Heuser J, Wieland F, Jahn R (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846

    CAS  PubMed  Google Scholar 

  • Takei K, Mundigl O, Daniell L, De Camilli P (1996) The synaptic vesicle cycle: a single vesicle budding step involving clathrin and dynamin. J Cell Biol 133(6):1237–1250

    CAS  PubMed  Google Scholar 

  • Tarelli FT, Bossi M, Fesce R, Greengard P, Valtorta F (1992) Synapsin I partially dissociates from synaptic vesicles during exocytosis induced by electrical stimulation. Neuron 9:1143–1153

    CAS  Google Scholar 

  • Tarsa L, Goda Y (2002) Synaptophysin regulates activity-dependent synapse formation in cultured hippocampal neurons. Proc Natl Acad Sci U S A 99(2):1012–1016

    CAS  PubMed Central  PubMed  Google Scholar 

  • Teng H, Wilkinson RS (2000) Clathrin-mediated endocytosis near active zones in snake motor boutons. J Neurosci 20:7986–7993

    CAS  PubMed  Google Scholar 

  • Tsuriel S, Geva R, Zamorano P, Dresbach T, Boecker T, Gundelfinger ED, Garner CC, Ziv NE (2006) Local sharing as a predominant determinant of synaptic vesicle matrix molecular dynamics. PLoS Biol 4(9):e271

    PubMed Central  PubMed  Google Scholar 

  • Uytterhoeven V, Kuenen S, Kasprowicz J, Miskiewicz K, Verstreken P (2011) Loss of skywalker reveals synaptic endosomes as sorting stations for synaptic vesicle proteins. Cell 145:117–132

    CAS  PubMed  Google Scholar 

  • Valtorta F, Pozzi D, Benfenati F, Fornasiero EF (2011) The synapsins: multitask modulators of neuronal development. Semin Cell Dev Biol 22(4):378–386

    CAS  PubMed  Google Scholar 

  • Verhage M, Maia AS, Plomp JJ, Brussard AB, Heeroma JH, Vermeer H, Toonen RF, Hammer RE, van den Berg TK, Missler M, Geuze HJ, Südhof TC (2000) Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287:864–869

    CAS  PubMed  Google Scholar 

  • Wang Y, Tang BL (2006) SNAREs in neurons – beyond synaptic vesicle exocytosis. Mol Membr Biol 23(5):377–384

    PubMed  Google Scholar 

  • Welzel O, Knörr J, Stroebel AM, Kornhuber J, Groemer TW (2011) A fast and robust method for automated analysis of axonal transport. Eur Biophys J 40(9):1061–1069

    PubMed  Google Scholar 

  • Wiegert JS, Oertner TG (2013) Long-term depression triggers the selective elimination of weakly integrated synapses. Proc Natl Acad Sci U S A 110(47):E4510–E4519

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wienisch M, Klingauf J (2006) Vesicular proteins exocytosed and subsequently retrieved by compensatory endocytosis are nonidentical. Nat Neurosci 9:1019–1027

    CAS  PubMed  Google Scholar 

  • Wilhelm BG, Groemer TW, Rizzoli SO (2010) The same synaptic vesicles drive active and spontaneous release. Nat Neurosci 13(12):1454–1456

    CAS  PubMed  Google Scholar 

  • Wilhelm BG, Mandad S, Truckenbrodt S, Kröhnert K, Schäfer C, Rammner B, Koo SJ, Claßen GA, Krauss M, Haucke V, Urlaub H, Rizzoli SO (2014) Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. Science 344:1023–1028

    CAS  PubMed  Google Scholar 

  • Willig KI, Rizzoli SO, Westphal V, Jahn R, Hell SW (2006) STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440:935–939

    CAS  PubMed  Google Scholar 

  • Wragg RT, Snead D, Dong Y, Ramlall TF, Menon I, Bai J, Eliezer D, Dittman JS (2013) Synaptic vesicles position complexin to block spontaneous fusion. Neuron 77:323–334

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu-Friedman MA, Harris KM, Regehr WG (2001) Three-dimensional comparison of ultrastructural characteristics at depressing and facilitating synapses onto cerebellar purkinje cells. J Neurosci 21(17):6666–6672

    CAS  PubMed  Google Scholar 

  • Zakharenko SS, Zablow L, Siegelbaum SA (2001) Visualization of changes in presynaptic function during long-term synaptic plasticity. Nat Neurosci 4(7):711–717

    CAS  PubMed  Google Scholar 

  • Zhang YZ, Ouyang YC, Hou Y, Schatten H, Chen DY, Sun QY (2008) Mitochondrial behavior during oogenesis in zebrafish: a confocal microscopy analysis. Dev Growth Differ 50(3):189–201

    PubMed  Google Scholar 

  • Zhou RR, Wang B, Wang J, Schatten H, Zhang YZ (2010) Is the mitochondrial cloud the selection machinery for preferentially transmitting wild-type mtDNA between generations? Rewinding Müller’s ratchet efficiently. Curr Genet 56(2):101–107

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Truckenbrodt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Truckenbrodt, S., Rizzoli, S.O. (2015). Synaptic Vesicle Pools: Classical and Emerging Roles. In: Mochida, S. (eds) Presynaptic Terminals. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55166-9_14

Download citation

Publish with us

Policies and ethics