Skip to main content

Early Prostate Cancer (T1–2N0M0)

  • Chapter
Intensity-Modulated Radiation Therapy

Abstract

The definitive treatment of early stage prostate cancer with radiation therapy has progressed dramatically over the past two decades primarily due to the development and implementation of intensity-modulated radiation therapy (IMRT) techniques and better definition of the role of androgen deprivation therapy (ADT). IMRT has permitted the escalation of radiotherapy dose to the target tissues, namely, the prostate and proximal seminal vesicles, in an effort to improve tumor cell killing and local tumor control, while also reducing dose to nearby organs at risk (OARs) including the bladder, rectum, bowel, femoral heads, and penile bulb. Advances in image-guided radiotherapy (IGRT) have improved the accuracy of the delivery of IMRT, reduced PTV margins, and consequently decreased acute and long-term side effects. This chapter will review the clinical evidence for the use of IMRT for early stage, clinically localized (T1–2N0M0) prostate cancer and will outline the processes involved in designing and implementing a safe and effective IMRT treatment plan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62(1):10–29

    PubMed  Google Scholar 

  2. Eccles BK et al (2013) SABRE 1 (Surgery Against Brachytherapy – a Randomised Evaluation): feasibility randomised controlled trial (RCT) of brachytherapy vs radical prostatectomy in low-intermediate risk clinically localised prostate cancer. BJU Int 112(3):330–337

    PubMed  Google Scholar 

  3. Kuban DA et al (2003) Long-term multi-institutional analysis of stage T1-T2 prostate cancer treated with radiotherapy in the PSA era. Int J Radiat Oncol Biol Phys 57(4):915–928

    PubMed  Google Scholar 

  4. Pilepich MV et al (1987) Correlation of radiotherapeutic parameters and treatment related morbidity in carcinoma of the prostate–analysis of RTOG study 75–06. Int J Radiat Oncol Biol Phys 13(3):351–357

    CAS  PubMed  Google Scholar 

  5. Hanks GE, Martz KL, Diamond JJ (1988) The effect of dose on local control of prostate cancer. Int J Radiat Oncol Biol Phys 15(6):1299–1305

    CAS  PubMed  Google Scholar 

  6. Valicenti R et al (2000) Survival advantage from higher-dose radiation therapy for clinically localized prostate cancer treated on the Radiation Therapy Oncology Group trials. J Clin Oncol 18(14):2740–2746

    CAS  PubMed  Google Scholar 

  7. Zelefsky MJ et al (2008) Influence of local tumor control on distant metastases and cancer related mortality after external beam radiotherapy for prostate cancer. J Urol 179(4):1368–1373; discussion 1373

    PubMed Central  PubMed  Google Scholar 

  8. Leibel SA et al (1994) The biological basis and clinical application of three-dimensional conformal external beam radiation therapy in carcinoma of the prostate. Semin Oncol 21(5):580–597

    CAS  PubMed  Google Scholar 

  9. Ten Haken RK et al (1989) Boost treatment of the prostate using shaped, fixed fields. Int J Radiat Oncol Biol Phys 16(1):193–200

    PubMed  Google Scholar 

  10. Eade TN et al (2007) What dose of external-beam radiation is high enough for prostate cancer? Int J Radiat Oncol Biol Phys 68(3):682–689

    PubMed Central  PubMed  Google Scholar 

  11. Kuban DA et al (2008) Long-term results of the M. D. Anderson randomized dose-escalation trial for prostate cancer. Int J Radiat Oncol Biol Phys 70(1):67–74

    PubMed  Google Scholar 

  12. Zietman AL et al (2005) Comparison of conventional-dose vs high-dose conformal radiation therapy in clinically localized adenocarcinoma of the prostate: a randomized controlled trial. J Am Med Assoc 294(10):1233–1239

    CAS  Google Scholar 

  13. Peeters ST et al (2006) Dose-response in radiotherapy for localized prostate cancer: results of the Dutch multicenter randomized phase III trial comparing 68 Gy of radiotherapy with 78 Gy. J Clin Oncol 24(13):1990–1996

    PubMed  Google Scholar 

  14. Dearnaley DP et al (2007) Escalated-dose versus standard-dose conformal radiotherapy in prostate cancer: first results from the MRC RT01 randomised controlled trial. Lancet Oncol 8(6):475–487

    PubMed  Google Scholar 

  15. Beckendorf V et al (2011) 70 Gy versus 80 Gy in localized prostate cancer: 5-year results of GETUG 06 randomized trial. Int J Radiat Oncol Biol Phys 80(4):1056–1063

    PubMed  Google Scholar 

  16. Viani GA, Stefano EJ, Afonso SL (2009) Higher-than-conventional radiation doses in localized prostate cancer treatment: a meta-analysis of randomized, controlled trials. Int J Radiat Oncol Biol Phys 74(5):1405–1418

    PubMed  Google Scholar 

  17. Ling CC et al (1996) Conformal radiation treatment of prostate cancer using inversely-planned intensity-modulated photon beams produced with dynamic multileaf collimation. Int J Radiat Oncol Biol Phys 35(4):721–730

    CAS  PubMed  Google Scholar 

  18. Marchal C et al (2004) Preliminary results of the assessment of intensity modulated radiotherapy (IMRT) for prostatic and head and neck tumors (STIC 2001). Cancer Radiother 8(Suppl 1):S121–S127

    PubMed  Google Scholar 

  19. Nutting CM et al (2000) Reduction of small and large bowel irradiation using an optimized intensity-modulated pelvic radiotherapy technique in patients with prostate cancer. Int J Radiat Oncol Biol Phys 48(3):649–656

    CAS  PubMed  Google Scholar 

  20. Vlachaki MT et al (2005) IMRT versus conventional 3DCRT on prostate and normal tissue dosimetry using an endorectal balloon for prostate immobilization. Med Dosim 30(2):69–75

    PubMed  Google Scholar 

  21. Ashman JB et al (2005) Whole pelvic radiotherapy for prostate cancer using 3D conformal and intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 63(3):765–771

    PubMed  Google Scholar 

  22. Kao J et al (2004) Sparing of the penile bulb and proximal penile structures with intensity-modulated radiation therapy for prostate cancer. Br J Radiol 77(914):129–136

    CAS  PubMed  Google Scholar 

  23. Ailleres N et al (2004) Pilot study of conformal intensity modulated radiation therapy for localized prostate cancer. Cancer Radiother 8(2):59–69

    CAS  PubMed  Google Scholar 

  24. Wang-Chesebro A et al (2006) Intensity-modulated radiotherapy improves lymph node coverage and dose to critical structures compared with three-dimensional conformal radiation therapy in clinically localized prostate cancer. Int J Radiat Oncol Biol Phys 66(3):654–662

    PubMed  Google Scholar 

  25. Perna L et al (2009) Sparing the penile bulb in the radical irradiation of clinically localised prostate carcinoma: a comparison between MRI and CT prostatic apex definition in 3DCRT, Linac-IMRT and Helical Tomotherapy. Radiother Oncol 93(1):57–63

    PubMed  Google Scholar 

  26. Zelefsky MJ et al (2000) Clinical experience with intensity modulated radiation therapy (IMRT) in prostate cancer. Radiother Oncol 55(3):241–249

    CAS  PubMed  Google Scholar 

  27. Zelefsky MJ et al (2001) High dose radiation delivered by intensity modulated conformal radiotherapy improves the outcome of localized prostate cancer. J Urol 166(3):876–881

    CAS  PubMed  Google Scholar 

  28. Al-Mamgani A et al (2009) Role of intensity-modulated radiotherapy in reducing toxicity in dose escalation for localized prostate cancer. Int J Radiat Oncol Biol Phys 73(3):685–691

    PubMed  Google Scholar 

  29. De Meerleer G et al (2004) Intensity-modulated radiotherapy as primary treatment for prostate cancer: acute toxicity in 114 patients. Int J Radiat Oncol Biol Phys 60(3):777–787

    PubMed  Google Scholar 

  30. Kry SF et al (2005) The calculated risk of fatal secondary malignancies from intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 62(4):1195–1203

    PubMed  Google Scholar 

  31. Brenner DJ et al (2000) Second malignancies in prostate carcinoma patients after radiotherapy compared with surgery. Cancer 88(2):398–406

    CAS  PubMed  Google Scholar 

  32. Brenner DJ (2006) Induced second cancers after prostate-cancer radiotherapy: no cause for concern? Int J Radiat Oncol Biol Phys 65(3):637–639

    PubMed  Google Scholar 

  33. Nieder AM, Porter MP, Soloway MS (2008) Radiation therapy for prostate cancer increases subsequent risk of bladder and rectal cancer: a population based cohort study. J Urol 180(5):2005–2009; discussion 2009–10

    PubMed  Google Scholar 

  34. Singh AK et al (2010) Increasing age and treatment modality are predictors for subsequent diagnosis of bladder cancer following prostate cancer diagnosis. Int J Radiat Oncol Biol Phys 78(4):1086–1094

    PubMed  Google Scholar 

  35. Kendal WS et al (2006) Prostatic irradiation is not associated with any measurable increase in the risk of subsequent rectal cancer. Int J Radiat Oncol Biol Phys 65(3):661–668

    PubMed  Google Scholar 

  36. Isebaert S et al (2013) Multiparametric MRI for prostate cancer localization in correlation to whole-mount histopathology. J Magn Reson Imaging 37(6):1392–1401

    PubMed  Google Scholar 

  37. Sciarra A et al (2011) Advances in magnetic resonance imaging: how they are changing the management of prostate cancer. Eur Urol 59(6):962–977

    PubMed  Google Scholar 

  38. Hegde JV et al (2013) Multiparametric MRI of prostate cancer: an update on state-of-the-art techniques and their performance in detecting and localizing prostate cancer. J Magn Reson Imaging 37(5):1035–1054

    PubMed Central  PubMed  Google Scholar 

  39. Vargas HA et al (2011) Diffusion-weighted endorectal MR imaging at 3 T for prostate cancer: tumor detection and assessment of aggressiveness. Radiology 259(3):775–784

    PubMed Central  PubMed  Google Scholar 

  40. Coakley FV et al (2002) Prostate cancer tumor volume: measurement with endorectal MR and MR spectroscopic imaging. Radiology 223(1):91–97

    PubMed  Google Scholar 

  41. Mazaheri Y et al (2008) Prostate cancer: identification with combined diffusion-weighted MR imaging and 3D 1H MR spectroscopic imaging–correlation with pathologic findings. Radiology 246(2):480–488

    PubMed  Google Scholar 

  42. Hambrock T et al (2011) Relationship between apparent diffusion coefficients at 3.0-T MR imaging and Gleason grade in peripheral zone prostate cancer. Radiology 259(2):453–461

    PubMed  Google Scholar 

  43. Padhani AR et al (2000) Dynamic contrast enhanced MRI of prostate cancer: correlation with morphology and tumour stage, histological grade and PSA. Clin Radiol 55(2):99–109

    CAS  PubMed  Google Scholar 

  44. Turnbull LW et al (1999) Differentiation of prostatic carcinoma and benign prostatic hyperplasia: correlation between dynamic Gd-DTPA-enhanced MR imaging and histopathology. J Magn Reson Imaging 9(2):311–316

    CAS  PubMed  Google Scholar 

  45. Girouin N et al (2007) Prostate dynamic contrast-enhanced MRI with simple visual diagnostic criteria: is it reasonable? Eur Radiol 17(6):1498–1509

    PubMed  Google Scholar 

  46. Schmuecking M et al (2009) Dynamic MRI and CAD vs. choline MRS: where is the detection level for a lesion characterisation in prostate cancer? Int J Radiat Biol 85(9):814–824

    CAS  PubMed  Google Scholar 

  47. Singh AK et al (2007) Simultaneous integrated boost of biopsy proven, MRI defined dominant intra-prostatic lesions to 95 Gray with IMRT: early results of a phase I NCI study. Radiat Oncol 2:36

    PubMed Central  PubMed  Google Scholar 

  48. Fonteyne V et al (2008) Intensity-modulated radiotherapy as primary therapy for prostate cancer: report on acute toxicity after dose escalation with simultaneous integrated boost to intraprostatic lesion. Int J Radiat Oncol Biol Phys 72(3):799–807

    PubMed  Google Scholar 

  49. Ippolito E et al (2012) Intensity-modulated radiotherapy with simultaneous integrated boost to dominant intraprostatic lesion: preliminary report on toxicity. Am J Clin Oncol 35(2):158–162

    CAS  PubMed  Google Scholar 

  50. Aluwini S et al (2013) Stereotactic body radiotherapy with a focal boost to the MRI-visible tumor as monotherapy for low- and intermediate-risk prostate cancer: early results. Radiat Oncol 8:84

    PubMed Central  PubMed  Google Scholar 

  51. Riches SF et al (2014) Effect on therapeutic ratio of planning a boosted radiotherapy dose to the dominant intraprostatic tumour lesion within the prostate based on multifunctional MR parameters. Br J Radiol 87(1037):20130813

    CAS  PubMed  Google Scholar 

  52. Murray LJ et al (2014) Prostate stereotactic ablative radiation therapy using volumetric modulated arc therapy to dominant intraprostatic lesions. Int J Radiat Oncol Biol Phys 89(2):406–415

    PubMed Central  PubMed  Google Scholar 

  53. Bauman G et al (2013) Boosting imaging defined dominant prostatic tumors: a systematic review. Radiother Oncol 107(3):274–281

    PubMed  Google Scholar 

  54. van Lin EN et al (2006) IMRT boost dose planning on dominant intraprostatic lesions: gold marker-based three-dimensional fusion of CT with dynamic contrast-enhanced and 1H-spectroscopic MRI. Int J Radiat Oncol Biol Phys 65(1):291–303

    PubMed  Google Scholar 

  55. Shinohara K, Roach M 3rd (2008) Technique for implantation of fiducial markers in the prostate. Urology 71(2):196–200

    PubMed  Google Scholar 

  56. Gauthier I et al (2009) Dosimetric impact and theoretical clinical benefits of fiducial markers for dose escalated prostate cancer radiation treatment. Int J Radiat Oncol Biol Phys 74(4):1128–1133

    PubMed  Google Scholar 

  57. Chung PW et al (2004) On-line aSi portal imaging of implanted fiducial markers for the reduction of interfraction error during conformal radiotherapy of prostate carcinoma. Int J Radiat Oncol Biol Phys 60(1):329–334

    PubMed  Google Scholar 

  58. Schallenkamp JM et al (2005) Prostate position relative to pelvic bony anatomy based on intraprostatic gold markers and electronic portal imaging. Int J Radiat Oncol Biol Phys 63(3):800–811

    PubMed  Google Scholar 

  59. Beltran C, Herman MG, Davis BJ (2008) Planning target margin calculations for prostate radiotherapy based on intrafraction and interfraction motion using four localization methods. Int J Radiat Oncol Biol Phys 70(1):289–295

    PubMed  Google Scholar 

  60. Kupelian PA et al (2005) Intraprostatic fiducials for localization of the prostate gland: monitoring intermarker distances during radiation therapy to test for marker stability. Int J Radiat Oncol Biol Phys 62(5):1291–1296

    PubMed  Google Scholar 

  61. Poggi MM et al (2003) Marker seed migration in prostate localization. Int J Radiat Oncol Biol Phys 56(5):1248–1251

    PubMed  Google Scholar 

  62. Gill S et al (2012) Patient-reported complications from fiducial marker implantation for prostate image-guided radiotherapy. Br J Radiol 85(1015):1011–1017

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Igdem S et al (2009) Implantation of fiducial markers for image guidance in prostate radiotherapy: patient-reported toxicity. Br J Radiol 82(983):941–945

    CAS  PubMed  Google Scholar 

  64. Alonso-Arrizabalaga S et al (2007) Prostate planning treatment volume margin calculation based on the ExacTrac X-Ray 6D image-guided system: margins for various clinical implementations. Int J Radiat Oncol Biol Phys 69(3):936–943

    PubMed  Google Scholar 

  65. Nederveen AJ et al (2003) Comparison of megavoltage position verification for prostate irradiation based on bony anatomy and implanted fiducials. Radiother Oncol 68(1):81–88

    PubMed  Google Scholar 

  66. Langen KM et al (2008) Observations on real-time prostate gland motion using electromagnetic tracking. Int J Radiat Oncol Biol Phys 71(4):1084–1090

    PubMed  Google Scholar 

  67. Abramowitz M (2012) Noninvasive real-time prostate tracking using a transperineal ultrasound approach. Int J Radiat Oncol Biol Phys 84(3):1

    Google Scholar 

  68. Noel C et al (2009) Prediction of intrafraction prostate motion: accuracy of pre- and post-treatment imaging and intermittent imaging. Int J Radiat Oncol Biol Phys 73(3):692–698

    PubMed  Google Scholar 

  69. Bittner N et al (2010) Electromagnetic tracking of intrafraction prostate displacement in patients externally immobilized in the prone position. Int J Radiat Oncol Biol Phys 77(2):490–495

    PubMed  Google Scholar 

  70. Coakley FV, Hricak H (2000) Radiologic anatomy of the prostate gland: a clinical approach. Radiol Clin N Am 38(1):15–30

    CAS  PubMed  Google Scholar 

  71. Zackrisson B, Hugosson J, Aus G (2000) Transrectal ultrasound anatomy of the prostate and seminal vesicles in healthy men. Scand J Urol Nephrol 34(3):175–180

    CAS  PubMed  Google Scholar 

  72. McLaughlin PW et al (2010) Radiographic and anatomic basis for prostate contouring errors and methods to improve prostate contouring accuracy. Int J Radiat Oncol Biol Phys 76(2):369–378

    PubMed  Google Scholar 

  73. Villeirs GM, De Meerleer GO (2007) Magnetic resonance imaging (MRI) anatomy of the prostate and application of MRI in radiotherapy planning. Eur J Radiol 63(3):361–368

    PubMed  Google Scholar 

  74. Debois M et al (1999) The contribution of magnetic resonance imaging to the three-dimensional treatment planning of localized prostate cancer. Int J Radiat Oncol Biol Phys 45(4):857–865

    CAS  PubMed  Google Scholar 

  75. Milosevic M et al (1998) Magnetic resonance imaging (MRI) for localization of the prostatic apex: comparison to computed tomography (CT) and urethrography. Radiother Oncol 47(3):277–284

    CAS  PubMed  Google Scholar 

  76. Smith WL et al (2007) Prostate volume contouring: a 3D analysis of segmentation using 3DTRUS, CT, and MR. Int J Radiat Oncol Biol Phys 67(4):1238–1247

    PubMed  Google Scholar 

  77. Roach M 3rd et al (1996) Prostate volumes defined by magnetic resonance imaging and computerized tomographic scans for three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys 35(5):1011–1018

    PubMed  Google Scholar 

  78. Rasch C et al (1999) Definition of the prostate in CT and MRI: a multi-observer study. Int J Radiat Oncol Biol Phys 43(1):57–66

    CAS  PubMed  Google Scholar 

  79. van Herk M et al (1998) Automatic registration of pelvic computed tomography data and magnetic resonance scans including a full circle method for quantitative accuracy evaluation. Med Phys 25(10):2054–2067

    PubMed  Google Scholar 

  80. Gofrit ON et al (2009) The dimensions and symmetry of the seminal vesicles. J Robot Surg 3:29–33

    Google Scholar 

  81. Banner MP, Hassler R (1978) The normal seminal vesiculogram. Radiology 128(2):339–344

    CAS  PubMed  Google Scholar 

  82. Secaf E et al (1991) MR imaging of the seminal vesicles. AJR Am J Roentgenol 156(5):989–994

    CAS  PubMed  Google Scholar 

  83. Villeirs GM et al (2005) Interobserver delineation variation using CT versus combined CT + MRI in intensity-modulated radiotherapy for prostate cancer. Strahlenther Onkol 181(7):424–430

    PubMed  Google Scholar 

  84. Wallner KE et al (2002) Penile bulb imaging. Int J Radiat Oncol Biol Phys 53(4):928–933

    PubMed  Google Scholar 

  85. van der Wielen GJ, Mulhall JP, Incrocci L (2007) Erectile dysfunction after radiotherapy for prostate cancer and radiation dose to the penile structures: a critical review. Radiother Oncol 84(2):107–113

    PubMed  Google Scholar 

  86. Buyyounouski MK et al (2004) The radiation doses to erectile tissues defined with magnetic resonance imaging after intensity-modulated radiation therapy or iodine-125 brachytherapy. Int J Radiat Oncol Biol Phys 59(5):1383–1391

    PubMed  Google Scholar 

  87. Brown MW et al (2007) An analysis of erectile function after intensity modulated radiation therapy for localized prostate carcinoma. Prostate Cancer Prostatic Dis 10(2):189–193

    CAS  PubMed  Google Scholar 

  88. Macdonald AG et al (2005) Predictive factors for erectile dysfunction in men with prostate cancer after brachytherapy: is dose to the penile bulb important? Int J Radiat Oncol Biol Phys 63(1):155–163

    PubMed  Google Scholar 

  89. Merrick GS et al (2005) Erectile function after prostate brachytherapy. Int J Radiat Oncol Biol Phys 62(2):437–447

    PubMed  Google Scholar 

  90. Roach M et al (2004) Penile bulb dose and impotence after three-dimensional conformal radiotherapy for prostate cancer on RTOG 9406: findings from a prospective, multi-institutional, phase I/II dose-escalation study. Int J Radiat Oncol Biol Phys 60(5):1351–1356

    PubMed  Google Scholar 

  91. Poon DM et al (2013) Dosimetric advantages and superior treatment delivery efficiency of RapidArc over conventional intensity-modulated radiotherapy in high-risk prostate cancer involving seminal vesicles and pelvic nodes. Clin Oncol (R Coll Radiol) 25(12):706–712

    CAS  Google Scholar 

  92. Kopp RW et al (2011) VMAT vs. 7-field-IMRT: assessing the dosimetric parameters of prostate cancer treatment with a 292-patient sample. Med Dosim 36(4):365–372

    PubMed  Google Scholar 

  93. Iori M et al (2008) Dose-volume and biological-model based comparison between helical tomotherapy and (inverse-planned) IMAT for prostate tumours. Radiother Oncol 88(1):34–45

    PubMed  Google Scholar 

  94. Korreman S et al (2010) The European Society of Therapeutic Radiology and Oncology-European Institute of Radiotherapy (ESTRO-EIR) report on 3D CT-based in-room image guidance systems: a practical and technical review and guide. Radiother Oncol 94(2):129–144

    PubMed  Google Scholar 

  95. Landoni V et al (2006) A study of the effect of setup errors and organ motion on prostate cancer treatment with IMRT. Int J Radiat Oncol Biol Phys 65(2):587–594

    PubMed  Google Scholar 

  96. Alasti H et al (2001) Portal imaging for evaluation of daily on-line setup errors and off-line organ motion during conformal irradiation of carcinoma of the prostate. Int J Radiat Oncol Biol Phys 49(3):869–884

    CAS  PubMed  Google Scholar 

  97. Vigneault E et al (1997) Electronic portal imaging device detection of radioopaque markers for the evaluation of prostate position during megavoltage irradiation: a clinical study. Int J Radiat Oncol Biol Phys 37(1):205–212

    CAS  PubMed  Google Scholar 

  98. Moseley DJ et al (2007) Comparison of localization performance with implanted fiducial markers and cone-beam computed tomography for on-line image-guided radiotherapy of the prostate. Int J Radiat Oncol Biol Phys 67(3):942–953

    PubMed Central  PubMed  Google Scholar 

  99. Roeske JC et al (1995) Evaluation of changes in the size and location of the prostate, seminal vesicles, bladder, and rectum during a course of external beam radiation therapy. Int J Radiat Oncol Biol Phys 33(5):1321–1329

    CAS  PubMed  Google Scholar 

  100. Zelefsky MJ et al (1999) Quantification and predictors of prostate position variability in 50 patients evaluated with multiple CT scans during conformal radiotherapy. Radiother Oncol 50(2):225–234

    CAS  PubMed  Google Scholar 

  101. Antolak JA et al (1998) Prostate target volume variations during a course of radiotherapy. Int J Radiat Oncol Biol Phys 42(3):661–672

    CAS  PubMed  Google Scholar 

  102. Beard CJ et al (1996) Analysis of prostate and seminal vesicle motion: implications for treatment planning. Int J Radiat Oncol Biol Phys 34(2):451–458

    CAS  PubMed  Google Scholar 

  103. de Crevoisier R et al (2005) Increased risk of biochemical and local failure in patients with distended rectum on the planning CT for prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 62(4):965–973

    PubMed  Google Scholar 

  104. Heemsbergen WD et al (2007) Increased risk of biochemical and clinical failure for prostate patients with a large rectum at radiotherapy planning: results from the Dutch trial of 68 GY versus 78 Gy. Int J Radiat Oncol Biol Phys 67(5):1418–1424

    CAS  PubMed  Google Scholar 

  105. Kupelian PA et al (2008) Impact of image guidance on outcomes after external beam radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 70(4):1146–1150

    PubMed  Google Scholar 

  106. Hanna SA et al (2012) Role of intra- or periprostatic calcifications in image-guided radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 82(3):1208–1216

    PubMed  Google Scholar 

  107. Ryan D et al (2009) Prostate positioning errors associated with two automatic registration based image guidance strategies. J Appl Clin Med Phys 10(4):3071

    CAS  PubMed  Google Scholar 

  108. Bylund KC et al (2008) Analysis of interfraction prostate motion using megavoltage cone beam computed tomography. Int J Radiat Oncol Biol Phys 72(3):949–956

    PubMed  Google Scholar 

  109. Gayou O, Miften M (2008) Comparison of mega-voltage cone-beam computed tomography prostate localization with online ultrasound and fiducial markers methods. Med Phys 35(2):531–538

    PubMed  Google Scholar 

  110. Kupelian P et al (2007) Multi-institutional clinical experience with the Calypso System in localization and continuous, real-time monitoring of the prostate gland during external radiotherapy. Int J Radiat Oncol Biol Phys 67(4):1088–1098

    PubMed  Google Scholar 

  111. Scarbrough TJ et al (2006) Comparison of ultrasound and implanted seed marker prostate localization methods: implications for image-guided radiotherapy. Int J Radiat Oncol Biol Phys 65(2):378–387

    PubMed  Google Scholar 

  112. Boda-Heggemann J et al (2008) Accuracy of ultrasound-based (BAT) prostate-repositioning: a three-dimensional on-line fiducial-based assessment with cone-beam computed tomography. Int J Radiat Oncol Biol Phys 70(4):1247–1255

    PubMed  Google Scholar 

  113. Pollack A et al (2013) Randomized trial of hypofractionated external-beam radiotherapy for prostate cancer. J Clin Oncol 31(31):3860–3868

    PubMed Central  PubMed  Google Scholar 

  114. Spratt DE et al (2013) Long-term survival and toxicity in patients treated with high-dose intensity modulated radiation therapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 85(3):686–692

    PubMed  Google Scholar 

  115. Spratt DE et al (2014) Comparison of high-dose (86.4 Gy) IMRT vs combined brachytherapy plus IMRT for intermediate-risk prostate cancer. BJU Int 114(3):360–367

    Google Scholar 

  116. Pickett B et al (1999) Static field intensity modulation to treat a dominant intra-prostatic lesion to 90 Gy compared to seven field 3-dimensional radiotherapy. Int J Radiat Oncol Biol Phys 44(4):921–929

    CAS  PubMed  Google Scholar 

  117. Pucar D et al (2007) Clinically significant prostate cancer local recurrence after radiation therapy occurs at the site of primary tumor: magnetic resonance imaging and step-section pathology evidence. Int J Radiat Oncol Biol Phys 69(1):62–69

    PubMed  Google Scholar 

  118. D’Amico AV et al (2008) Androgen suppression and radiation vs radiation alone for prostate cancer: a randomized trial. J Am Med Assoc 299(3):289–295

    Google Scholar 

  119. Jones CU et al (2011) Radiotherapy and short-term androgen deprivation for localized prostate cancer. N Engl J Med 365(2):107–118

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Pollack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Scott, M., Orman, A., Pollack, A. (2015). Early Prostate Cancer (T1–2N0M0). In: Nishimura, Y., Komaki, R. (eds) Intensity-Modulated Radiation Therapy. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55486-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55486-8_19

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55485-1

  • Online ISBN: 978-4-431-55486-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics