Skip to main content

Dendritic Self-Avoidance

  • Chapter
  • First Online:
Dendrites

Abstract

Self-avoidance allows a neuron’s dendrites to recognize and repel each other. It constitutes one of the basic mechanisms facilitating even patterning of the receptive field. Self-avoidance enables neurons to distinguish self- from nonself-dendrites in complex systems so their receptive fields can coexist in overlapping territories. The phenomenon was first described in leech and later in Drosophila and C. elegans, with recent studies in vertebrate systems revealing self-avoidance as a universally conserved mechanism required to pattern dendrites of many if not all neurons. Molecularly, members of the immunoglobulin superfamily (IgSF), in particular Down’s syndrome cell adhesion molecule (Dscam), and clustered protocadherins (Pcdhs) play a prominent role in mediating self-avoidance. Here, I will summarize the findings and advances in our understanding of the conceptual and molecular nature of dendrite self-avoidance from the cellular to organismal level and discuss its contribution to dendritic patterning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Cameron S, Rao Y (2010) Molecular mechanisms of tiling and self-avoidance in neural development. Mol Brain 3:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen WV, Maniatis T (2013) Clustered protocadherins. Development 140:3297–3302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Lu Y, Meng S, Han M-H, Lin C, Wang X (2009) Alpha- and gamma-protocadherins negatively regulate PYK2. J Biol Chem 284:2880–2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen WV, Alvarez FJ, Lefebvre JL, Friedman B, Nwakeze C, Geiman E, Smith C, Thu CA, Tapia JC, Tasic B et al (2012) Functional significance of isoform diversification in the protocadherin gamma gene cluster. Neuron 75:402–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong X, Liu OW, Howell AS, Shen K (2013) An extracellular adhesion molecule complex patterns dendritic branching and morphogenesis. Cell 155:296–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards MM, Mammadova-Bach E, Alpy F, Klein A, Hicks WL, Roux M, Simon-Assmann P, Smith RS, Orend G, Wu J et al (2010) Mutations in Lama1 disrupt retinal vascular development and inner limiting membrane formation. J Biol Chem 285:7697–7711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esumi S, Kakazu N, Taguchi Y, Hirayama T, Sasaki A, Hirabayashi T, Koide T, Kitsukawa T, Hamada S, Yagi T (2005) Monoallelic yet combinatorial expression of variable exons of the protocadherin-alpha gene cluster in single neurons. Nat Genet 37:171–176

    Article  CAS  PubMed  Google Scholar 

  • Fuerst PG, Burgess RW (2009) Adhesion molecules in establishing retinal circuitry. Curr Opin Neurobiol 19:389–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuerst PG, Koizumi A, Masland RH, Burgess RW (2008) Neurite arborization and mosaic spacing in the mouse retina require DSCAM. Nature 451:470–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuerst PG, Bruce F, Tian M, Wei W, Elstrott J, Feller MB, Erskine L, Singer JH, Burgess RW (2009) DSCAM and DSCAML1 function in self-avoidance in multiple cell types in the developing mouse retina. Neuron 64:484–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuerst PG, Bruce F, Rounds RP, Erskine L, Burgess RW (2012) Cell autonomy of DSCAM function in retinal development. Dev Biol 361:326–337

    Article  CAS  PubMed  Google Scholar 

  • Garrett AM, Tadenev ALD, Burgess RW (2012a) DSCAMs: restoring balance to developmental forces. Front Mol Neurosci 5:86

    Article  PubMed  PubMed Central  Google Scholar 

  • Garrett AM, Schreiner D, Lobas MA, Weiner JA (2012b) γ-Protocadherins control cortical dendrite arborization by regulating the activity of a FAK/PKC/MARCKS signaling pathway. Neuron 74:269–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson DA, Tymanskyj S, Yuan RC, Leung HC, Lefebvre JL, Sanes JR, Chédotal A, Ma L (2014) Dendrite self-avoidance requires cell-autonomous slit/robo signaling in cerebellar purkinje cells. Neuron 81:1040–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grueber WB, Sagasti A (2010) Self-avoidance and tiling: mechanisms of dendrite and axon spacing. Cold Spring Harb Perspect Biol 2:a001750

    Article  PubMed  PubMed Central  Google Scholar 

  • Grueber WB, Jan LY, Jan YN (2002) Tiling of the drosophila epidermis by multidendritic sensory neurons. Development 129:2867–2878

    CAS  PubMed  Google Scholar 

  • Guo Y, Monahan K, Wu H, Gertz J, Varley KE, Li W, Myers RM, Maniatis T, Wu Q (2012) CTCF/cohesin-mediated DNA looping is required for protocadherin α promoter choice. Proc Natl Acad Sci U S A 109:21081–21086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hambsch B, Grinevich V, Seeburg PH, Schwarz MK (2005) {gamma}-Protocadherins, presenilin-mediated release of C-terminal fragment promotes locus expression. J Biol Chem 280:15888–15897

    Article  CAS  PubMed  Google Scholar 

  • Han C, Wang D, Soba P, Zhu S, Lin X, Jan LY, Jan Y-N (2012) Integrins regulate repulsion-mediated dendritic patterning of drosophila sensory neurons by restricting dendrites in a 2D space. Neuron 73:64–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hattori D, Chen Y, Matthews BJ, Salwinski L, Sabatti C, Grueber WB, Zipursky SL (2009) Robust discrimination between self and non-self neurites requires thousands of Dscam1 isoforms. Nature 461:644–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi S, Takeichi M (2015) Emerging roles of protocadherins: from self-avoidance to enhancement of motility. J Cell Sci 128:1–10

    Article  Google Scholar 

  • Hirano K, Kaneko R, Izawa T, Kawaguchi M, Kitsukawa T, Yagi T (2012) Single-neuron diversity generated by Protocadherin-β cluster in mouse central and peripheral nervous systems. Front Mol Neurosci 5:90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes ME, Bortnick R, Tsubouchi A, Bäumer P, Kondo M, Uemura T, Schmucker D (2007) Homophilic Dscam interactions control complex dendrite morphogenesis. Neuron 54:417–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jan YN, Jan LY (2010) Branching out: mechanisms of dendritic arborization. Nat Rev Neurosci 11:316–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneko R, Kato H, Kawamura Y, Esumi S, Hirayama T, Hirabayashi T, Yagi T (2006) Allelic gene regulation of Pcdh-α and Pcdh-γ clusters involving both monoallelic and biallelic expression in single Purkinje cells. J Biol Chem 281:30551–30560

    Article  CAS  PubMed  Google Scholar 

  • Keeler AB, Molumby MJ, Weiner JA (2015) Protocadherins branch out: multiple roles in dendrite development. Cell Adh Migr 9:214–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim ME, Shrestha BR, Blazeski R, Mason CA, Grueber WB (2012) Integrins establish dendrite-substrate relationships that promote dendritic self-avoidance and patterning in drosophila sensory neurons. Neuron 73:79–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohmura N, Senzaki K, Hamada S, Kai N, Yasuda R, Watanabe M, Ishii H, Yasuda M, Mishina M, Yagi T (1998) Diversity revealed by a novel family of cadherins expressed in neurons at a synaptic complex. Neuron 20:1137–1151

    Article  CAS  PubMed  Google Scholar 

  • Kramer AP, Kuwada JY (1983) Formation of the receptive fields of leech mechanosensory neurons during embryonic development. J Neurosci 3:2474–2486

    CAS  PubMed  Google Scholar 

  • Kramer AP, Stent GS (1985) Developmental arborization of sensory neurons in the leech Haementeria ghilianii. II. Experimentally induced variations in the branching pattern. J Neurosci 5:768–775

    CAS  PubMed  Google Scholar 

  • Lawrence Zipursky S, Grueber WB (2013) The molecular basis of self-avoidance. Annu Rev Neurosci 36:547–568

    Article  PubMed  Google Scholar 

  • Lee J, Peng Y, Lin W-Y, Parrish JZ (2014) Coordinate control of terminal dendrite patterning and dynamics by the membrane protein Raw. Development 142:1–12

    Google Scholar 

  • Lefebvre JL, Zhang Y, Meister M, Wang X, Sanes JR (2008) Gamma-Protocadherins regulate neuronal survival but are dispensable for circuit formation in retina. Development 135:4141–4151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefebvre JL, Kostadinov D, Chen WV, Maniatis T, Sanes JR (2012) Protocadherins mediate dendritic self-avoidance in the mammalian nervous system. Nature 488:517–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long H, Ou Y, Rao Y, van Meyel DJ (2009) Dendrite branching and self-avoidance are controlled by turtle, a conserved IgSF protein in drosophila. Development 136:3475–3484

    Article  CAS  PubMed  Google Scholar 

  • Matsubara D, Horiuchi S-Y, Shimono K, Usui T, Uemura T (2011) The seven-pass transmembrane cadherin Flamingo controls dendritic self-avoidance via its binding to a LIM domain protein, Espinas, in Drosophila sensory neurons. Genes Dev 25:1982–1996

    Article  CAS  PubMed  Google Scholar 

  • Matthews BJ, Kim ME, Flanagan JJ, Hattori D, Clemens JC, Zipursky SL, Grueber WB (2007) Dendrite self-avoidance is controlled by Dscam. Cell 129:593–604

    Article  CAS  PubMed  Google Scholar 

  • Meguro R, Hishida R, Tsukano H, Yoshitake K, Imamura R, Tohmi M, Kitsukawa T, Hirabayashi T, Yagi T, Takebayashi H, Shibuki K (2015) Impaired clustered protocadherin-α leads to aggregated retinogeniculate terminals and impaired visual acuity in mice. J Neurochem 133:66–72

    Article  CAS  PubMed  Google Scholar 

  • Meijers R, Puettmann-Holgado R, Skiniotis G, Liu J, Walz T, Wang J, Schmucker D (2007) Structural basis of Dscam isoform specificity. Nature 449:487–491

    Article  CAS  PubMed  Google Scholar 

  • Miura SK, Martins A, Zhang KX, Graveley BR, Zipursky SL (2013) Probabilistic splicing of Dscam1 establishes identity at the level of single neurons. Cell 155:1166–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monahan K, Rudnick ND, Kehayova PD, Pauli F, Newberry KM, Myers RM, Maniatis T (2012) Role of CCCTC binding factor (CTCF) and cohesin in the generation of single-cell diversity of Protocadherin- gene expression. Proc Natl Acad Sci 109:9125–9130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morishita H, Yagi T (2007) Protocadherin family: diversity, structure, and function. Curr Opin Cell Biol 19:584–592

    Article  CAS  PubMed  Google Scholar 

  • Murata Y, Hamada S, Morishita H, Mutoh T, Yagi T (2004) Interaction with protocadherin-gamma regulates the cell surface expression of protocadherin-alpha. J Biol Chem 279:49508–49516

    Article  CAS  PubMed  Google Scholar 

  • Neves G, Zucker J, Daly M, Chess A (2004) Stochastic yet biased expression of multiple Dscam splice variants by individual cells. Nat Genet 36:240–246

    Article  CAS  PubMed  Google Scholar 

  • Nicholls JG, Baylor DA (1968) Specific modalities and receptive fields of sensory neurons in CNS of the leech. J Neurophysiol 31:740–756

    CAS  PubMed  Google Scholar 

  • Noguchi Y, Hirabayashi T, Katori S, Kawamura Y, Sanbo M, Hirabayashi M, Kiyonari H, Uchimura A, Yagi T (2009) Total expression and dual gene-regulatory mechanisms maintained in deletions and duplications of the Pcdha cluster. J Biol Chem 284:32002–32014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinzón-Duarte G, Daly G, Li YN, Koch M, Brunken WJ (2010) Defective formation of the inner limiting membrane in laminin beta2- and gamma3-null mice produces retinal dysplasia. Invest Ophthalmol Vis Sci 51:1773–1782

    Article  PubMed  PubMed Central  Google Scholar 

  • Ribich S, Tasic B, Maniatis T (2006) Identification of long-range regulatory elements in the protocadherin-alpha gene cluster. Proc Natl Acad Sci U S A 103:19719–19724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riccomagno MM, Sun LO, Brady CM, Alexandropoulos K, Seo S, Kurokawa M, Kolodkin AL (2014) Cas adaptor proteins organize the retinal ganglion cell layer downstream of integrin signaling. Neuron 81:779–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubinstein R, Thu CA, Goodman KM, Wolcott HN, Bahna F, Mannepalli S, Ahlsen G, Chevee M, Halim A, Clausen H, Maniatis T, Shapiro L, Honig B (2015) Molecular logic of neuronal self-recognition through protocadherin domain interactions. Cell 163:629–642

    Article  CAS  PubMed  Google Scholar 

  • Salzberg Y, Díaz-Balzac CA, Ramirez-Suarez NJ, Attreed M, Tecle E, Desbois M, Kaprielian Z, Bülow HE (2013) Skin-derived cues control arborization of sensory dendrites in Caenorhabditis elegans. Cell 155:308–320

    Article  CAS  PubMed  Google Scholar 

  • Sawaya MR, Wojtowicz WM, Andre I, Qian B, Wu W, Baker D, Eisenberg D, Zipursky SL (2008) A double S shape provides the structural basis for the extraordinary binding specificity of Dscam isoforms. Cell 134:1007–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmucker D, Clemens JC, Shu H, Worby CA, Xiao J, Muda M, Dixon JE, Zipursky SL (2000) Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101:671–684

    Article  CAS  PubMed  Google Scholar 

  • Schramm RD, Li S, Harris BS, Rounds RP, Burgess RW, Ytreberg FM, Fuerst PG (2012) A novel mouse Dscam mutation inhibits localization and shedding of DSCAM. PLoS One 7:e52652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schreiner D, Weiner JA (2010) Combinatorial homophilic interaction between gamma-protocadherin multimers greatly expands the molecular diversity of cell adhesion. Proc Natl Acad Sci U S A 107:14893–14898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith CJ, Watson JD, VanHoven MK, Colón-Ramos DA, Miller DM (2012) Netrin (UNC-6) mediates dendritic self-avoidance. Nat Neurosci 15:731–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soba P, Zhu S, Emoto K, Younger S, Yang S-JJ, Yu H-HH, Lee T, Jan LY, Jan Y-NN (2007) Drosophila sensory neurons require Dscam for dendritic self-avoidance and proper dendritic field organization. Neuron 54:403–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soba P, Han C, Zheng Y, Perea D, Miguel-Aliaga I, Jan LY, Jan YN (2015) The ret receptor regulates sensory neuron dendrite growth and integrin mediated adhesion. Elife 4:e05491

    Google Scholar 

  • Sun LO, Jiang Z, Rivlin-Etzion M, Hand R, Brady CM, Matsuoka RL, Yau K-W, Feller MB, Kolodkin AL (2013) On and off retinal circuit assembly by divergent molecular mechanisms. Science 342:1241974

    Article  PubMed  Google Scholar 

  • Suo L, Lu H, Ying G, Capecchi MR, Wu Q (2012) Protocadherin clusters and cell adhesion kinase regulate dendrite complexity through Rho GTPase. J Mol Cell Biol 4:362–376

    Article  CAS  PubMed  Google Scholar 

  • Tasic B, Nabholz CE, Baldwin KK, Kim Y, Rueckert EH, Ribich SA, Cramer P, Wu Q, Axel R, Maniatis T (2002) Promoter choice determines splice site selection in protocadherin alpha and gamma pre-mRNA splicing. Mol Cell 10:21–33

    Article  CAS  PubMed  Google Scholar 

  • Thu CA, Chen WV, Rubinstein R, Chevee M, Wolcott HN, Felsovalyi KO, Tapia JC, Shapiro L, Honig B, Maniatis T (2014) Single-cell identity generated by combinatorial homophilic interactions between α, β, and γ Protocadherins. Cell 158:1045–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toyoda S, Kawaguchi M, Kobayashi T, Tarusawa E, Toyama T, Okano M, Oda M, Nakauchi H, Yoshimura Y, Sanbo M et al (2014) Developmental epigenetic modification regulates stochastic expression of clustered protocadherin genes, generating single neuron diversity. Neuron 82:94–108

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Macagno ER (1997) A detached branch stops being recognized as self by other branches of a neuron. J Neurobiol 35:53–64

    Google Scholar 

  • Wang J, Zugates CT, Liang IH, Lee CH, Lee T (2002a) Drosophila Dscam is required for divergent segregation of sister branches and suppresses ectopic bifurcation of axons. Neuron 33:559–571

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Weiner JA, Levi S, Craig AM, Bradley A, Sanes JR (2002b) Gamma protocadherins are required for survival of spinal interneurons. Neuron 36:843–854

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Su H, Bradley A (2002c) Molecular mechanisms governing Pcdh-γ gene expression: evidence for a multiple promoter and cis-alternative splicing model. Genes Dev 16:1890–1905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Ma X, Yang JS, Zheng X, Zugates CT, Lee CH, Lee T (2004) Transmembrane/juxtamembrane domain-dependent Dscam distribution and function during mushroom body neuronal morphogenesis. Neuron 43:663–672

    Article  CAS  PubMed  Google Scholar 

  • Watson FL, Püttmann-Holgado R, Thomas F, Lamar DL, Hughes M, Kondo M, Rebel VI, Schmucker D (2005) Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science 309:1874–1878

    Article  CAS  PubMed  Google Scholar 

  • Weiner JA, Wang X, Tapia JC, Sanes JR (2005) Gamma protocadherins are required for synaptic development in the spinal cord. Proc Natl Acad Sci U S A 102:8–14

    Article  CAS  PubMed  Google Scholar 

  • Wojtowicz WM, Flanagan JJ, Millard SS, Zipursky SL, Clemens JC (2004) Alternative splicing of Drosophila Dscam generates axon guidance receptors that exhibit isoform-specific homophilic binding. Cell 118:619–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wojtowicz WM, Wu W, Andre I, Qian B, Baker D, Zipursky SL (2007) A vast repertoire of Dscam binding specificities arises from modular interactions of variable Ig domains. Cell 130:1134–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Q, Maniatis T (1999) A striking organization of a large family of human neural cadherin-like cell adhesion genes. Cell 97:779–790

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Zhang T, Cheng JF, Kim Y, Grimwood J, Schmutz J, Dickson M, Noonan JP, Zhang MQ, Myers RM et al (2001) Comparative DNA sequence analysis of mouse and human protocadherin gene clusters. Genome Res 11:389–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu W, Ahlsen G, Baker D, Shapiro L, Zipursky SL (2012) Complementary chimeric isoforms reveal Dscam1 binding specificity in vivo. Neuron 74:261–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yagi T (2012) Molecular codes for neuronal individuality and cell assembly in the brain. Front Mol Neurosci 5:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu HH, Yang JS, Wang J, Huang Y, Lee T (2009) Endodomain diversity in the Drosophila Dscam and its roles in neuronal morphogenesis. J Neurosci 29:1904–1914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan X-LL, Clemens JC, Neves G, Hattori D, Flanagan JJ, Hummel T, Vasconcelos ML, Chess A, Zipursky SL (2004) Analysis of Dscam diversity in regulating axon guidance in Drosophila mushroom bodies. Neuron 43:673–686

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Hummel T, Clemens JC, Berdnik D, Zipursky SL, Luo L (2006) Dendritic patterning by Dscam and synaptic partner matching in the Drosophila antennal lobe. Nat Neurosci 9:349–355

    Article  CAS  PubMed  Google Scholar 

  • Zipursky SL, Sanes JR (2010) Chemoaffinity revisited: dscams, protocadherins, and neural circuit assembly. Cell 143:343–353

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

I would like to thank Dörte Clausen for the artwork and J. Parrish for the critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Soba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Soba, P. (2016). Dendritic Self-Avoidance. In: Emoto, K., Wong, R., Huang, E., Hoogenraad, C. (eds) Dendrites. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56050-0_8

Download citation

Publish with us

Policies and ethics