Skip to main content

Rheology Modifiers for the Management of Dysphagia

  • Chapter
  • First Online:
Rheology of Biological Soft Matter

Part of the book series: Soft and Biological Matter ((SOBIMA))

Abstract

Dysphagia is the medical term used to describe swallowing problems resulting from a disorder in the mechanics of swallowing which can lead to impairment in the safety, efficiency or quality of eating and drinking. Dysphagia can be caused by many disorders including neurological disorders, stroke, traumatic brain injury, Huntington’s disease, multiple sclerosis, Parkinson’s disease and cerebral palsy. Many of these conditions are associated with the elderly and, with the continuing demographic shift, dysphagia is a growing problem.

The rheological properties of the bolus significantly influence the effectiveness and safety of the swallowing process, and the use of hydrocolloids to control the rheology can greatly help in the management of dysphagia. To be an effective thickener for this application, the following properties are important:

  • Easy dispersion at low mixing speeds

  • Fast hydration (cold and hot)

  • Fast hydration in different media (water, tea, coffee, fruit juices)

  • Stable viscosity as a function of:

    • Time

    • Temperature

Creating instant viscosity under suboptimal mixing conditions and choosing the right rheological properties pose a number of challenges for the use of hydrocolloids in this application, and the factors influencing their choice and performance will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown, A., Mills, R.H., Daubert, C.R., and Casper, M.L. (1998). Establishing labels and standards for thickened liquids in the dysphagia diet. The Consultant Dietician, 23, 1.

    CAS  Google Scholar 

  2. Coster, S.T., and Schwarz, W.H. (1987). Rheology and the swallow-safe bolus. Dysphagia, 1, 93.

    Article  Google Scholar 

  3. Cox, W.P. and Merz, E.H. (1958). Correlation of dynamic and steady flow viscosities. J. Polym. Sci., 28, 619.

    Article  CAS  Google Scholar 

  4. Cichero, J.A.Y., Jackson, O., Halley, P.J., and Murdoch, B.E. (2000). How Thick Is Thick? Multicenter study of the rheological and material property characteristics of mealtime fluids and videofluoroscopy fluids. Dysphagia, 15, 188–200.

    Article  CAS  Google Scholar 

  5. Cichero, J.A.Y., Steele, C., Duivestein, J., Clavé, P., Chen, J., Kayashita, J., Dantas, R., Lecko, C., Speyer, R., Lam, P., & Murray, J. (2013). The need for international terminology and definitions for texture-modified foods and thickened liquids used in dysphagia management: Foundations of a global initiative. Curr. Phys. Med. Rehabil. Rep., 1, 280–291.

    Article  Google Scholar 

  6. Cross, M.M. (1965). Rheology of non-Newtonian fluids: a new flow equation for pseudo-plastic systems. J. Colloid Sci., 20, 417–437.

    Article  CAS  Google Scholar 

  7. Garin, N., De Pourcq, J.N., Martın-Venegas, R., Cardona, D., Gich, I., & Mangues, M.A. (2014). Viscosity differences between thickened beverages suitable for elderly patients with dysphagia. Dysphagia, 29, 483–488.

    Article  Google Scholar 

  8. Germain, I., Dufresne, T., and Ramaswamy, H.S. (2006). Rheological characterisation of thickened beverages used in the treatment of dysphagia. J. Food Eng., 73, 64.

    Article  Google Scholar 

  9. Glicksman, M. (1983). Food Hydrocolloids,Vols I, II and III. CRC Press Inc., FL.

    Google Scholar 

  10. Goulding, R., and Bakheit, A.M.O. (2000). Evaluation of the benefits of monitoring fluid thickness in the dietary management of dysphagic stroke patients. Clinical rehabilitation, 14, 99.

    Article  Google Scholar 

  11. Hanson, B., O’Leary, M.T., & Smith, C.H. (2012). The effect of saliva on the viscosity of thickened drinks. Dysphagia, 27 10–19.

    Article  Google Scholar 

  12. Hasegawa, A., Otoguro, A., Kumagai, H., & Nakazawa, F. (2005). Nihon Shokuhin Kagaku Kogaku Kaishi (in Japanese), 52, 441–447.

    Article  Google Scholar 

  13. Hasegawa, A., Nakazawa, F., & Kumagai, H. (2008). Nihon Shokuhin Kagaku Kogaku Kaishi (in Japanese), 55, 330–337.

    Article  Google Scholar 

  14. Hawdon, J.M., Beauregard, N., Slattery, J., & Kennedy, G. (2000). Identification of neonates at risk of developing feeding problems in infancy. Dev. Med. Child Neurol., 42, 235–9.

    Article  CAS  Google Scholar 

  15. Hooke, R. (1678). De PotentiaBestitutiva.

    Google Scholar 

  16. IDDSI (2015) Detailed descriptors, testing methods and evidence. Drinks: Levels 0–4. www.iddsi.org

  17. Imeson, A. (1999). Thickening and Gelling Agents for Food, 2nd edition. Aspen Publishers Inc.,MD.

    Google Scholar 

  18. Jansson,P-E., Kenne, L., & Lindberg, B. (1975). Structure of the extracellular polysaccharide from Xanthomonas campestris. Carbohydrate Research, 45, 275–282.

    Article  CAS  Google Scholar 

  19. Kamiya, T., Toyama, Y., Michiwaki, Y., & Kikuchi, T. (2013a) Development of a numerical simulator of human swallowing using a particle method (Part 1. Preliminary evaluation of the possibility of numerical simulation using MPS method). 35 th Annual International Conference of the IEEE EMBS 4454–57.

    Google Scholar 

  20. Kamiya, T., Toyama, Y., Michiwaki, Y., & Kikuchi, T. (2013b) Development of a numerical simulator of human swallowing using a particle method (Part 2. Evaluation of the accuracy of a swallowing simulation using the 3D MPS method). 35 th Annual International Conference of the IEEE EMBS 2992–95.

    Google Scholar 

  21. Kool, M.A., Harry Gruppen, H., Sworn, G., & Schols, H.A. (2013). Comparison of xanthans by the relative abundance of its six constituent repeating units. Carbohydrate Polymers, 98, 914–921

    Article  CAS  Google Scholar 

  22. Leonard, R.J., White, C., McKenzie, S., & Belafsky, P.C. (2014). Effects of bolus rheology on aspiration in patients with dysphagia. J. Acad. Nutr. Diet, 94, 590–4.

    Article  Google Scholar 

  23. Longmann, J.A. (1983). Evaluation and treatment of swallowing disorders. San Diego: College-Hill Pres Inc.

    Google Scholar 

  24. Mackley, M.R., Tock, C., Anthony, R., Butler, S.A., Chapman, G., & Vadillo, D. C. (2013). The rheology and processing behavior of starch and gum-based dysphagia thickeners. J. Rheol., 57, 1533.

    Article  CAS  Google Scholar 

  25. Mann, L.L., and Wong, K. (1996). Development of an objective method for assessing viscosity of formulated foods and beverages for the dysphagic diet. J. Am. Diet. Assoc., 96, 585.

    Article  CAS  Google Scholar 

  26. Matta, Z., Chambers IV, E., Garcia, J.M., & Helverson, J.M. (2006). Sensory characteristics of beverages prepared with commercial thickeners used for dysphagia diets. J. Am. Diet Assoc., 106, 1049–1054.

    Article  Google Scholar 

  27. Melton, L.D., Mindt, L., Rees, D.A., & Sanderson, G.R. (1976). Covalent structure of the polysaccharide from Xanthomonas campestris: Evidence from partial hydrolysis studies. Carbohydrate Research, 46, 245–257.

    Article  CAS  Google Scholar 

  28. Mills, H. (1999). Rheology overview: control of liquid viscosities in dysphagia management. Nutrition in Clinical Practice, 14, 52.

    Article  Google Scholar 

  29. Mitchell, J.R. (1979). Rheology of polysaccharide solutions and gels. In,. Polysaccharides in foods. J.M.V. Blanshard, and J.R. Mitchell, (Eds), Butterworth & Co Ltd., London, pp 51–72.

    Chapter  Google Scholar 

  30. Mitchell, J.R., Ferry, A.L., Desse, M., Hill, S.E., Hort, J., Marciani, L., & Wolf, B. (2008). Mixing hydrocolloids and water: Polymers versus particulates. In, Gums and Stabilisers for the Food Industry 14, P.A. Williams and G.O. Phillips (Eds.), RSC, Cambridge, pp 29–39.

    Google Scholar 

  31. Moret-Tatay, A., Rodríguez-García, J., Martí-Bonmatí, E., Hernando, I., & Hernandez, M.J. (2015). Commercial thickeners used by patients with dysphagia: Rheological and structural behaviour in different food matrices. Food Hydrocolloids, 51, 318–326

    Article  CAS  Google Scholar 

  32. Morris, E.R. (1984). Rheology of hydrocolloids. In, Gums and Stabilisers for the Food Industry 2. G.O. Phillips, D.J. Wedlock and P.A. Williams (Eds.), Pergamon Press, Oxford, pp 57–78.

    Google Scholar 

  33. Morris, E.R. (1989). Polysaccharide solution properties: Origin, rheological characterisation and implications for food systems. In, Frontiers in Carbohydrate Research-1. R.P. Millane, J.N. BeMiller and R. Chandrasekaran, (Eds.); Elsevier Applied Science; London, pp 132–163.

    Google Scholar 

  34. Morris, E.R., Cutler, A.N., Ross-Murphy, S.B., Rees, D.A., and Price, J. (1981). The concentration and shear rate dependence of viscosity in random coil polysaccharide solutions. Carbohydr. Polym., 1, 5–21.

    Article  CAS  Google Scholar 

  35. Nakauma, M., Ishihara, S., Funami, T., & Nishinari, K. (209). Swallowing profiles of food polysaccharide solutions with different flow behaviors. Food Hydrocolloids, 25, 965–973.

    Google Scholar 

  36. Newman, L.A., Keckley, C., Petersen, M.C., & Hamner, A. (2001). Swallowing function and medical diagnoses in infants suspected of Dysphagia. Pediatrics, 108, 6.

    Article  Google Scholar 

  37. Newton, I. (1687). Philosophiae Naturalis Principia Mathmatica.

    Google Scholar 

  38. Nishinari,K., Takemasa, M., Sua, L., Michiwaki, Y., Mizunuma, H., & Ogoshi, H.(209). Effect of shear thinning on aspiration - Toward making solutions for judging the risk of aspiration. Food Hydrocolloids, 25 1737–1743.

    Google Scholar 

  39. Paik, N-J., Han, T.R., Park, J.W., Lee, E.K., Park M.S., & Hwang I-K. (2004). Categorisation of dysphagic diets with the line spread test. Arch. Phys. Med. Rehabil., 85, 857.

    Article  Google Scholar 

  40. Payne, P., Methven, L., Fairfield, C., & Bell, A. (209). Consistently Inconsistent: Commercially Available Starch-Based Dysphagia Products. Dysphagia, 26, 27–33.

    Google Scholar 

  41. Penney, B. (2014). Use of fluid thickener to reduce dysphagia risk. Nursing Times; 90, 12, 16–18.

    Google Scholar 

  42. Phillips, G.O., & Williams, P.A. (2009). Handbook of Hydrocolloids, 2nd edition. Woodhead Publishing Ltd., Cambridge.

    Book  Google Scholar 

  43. Ross-Murphy, S.B., Rheological Methods. In Chan, H.W.-S (ed) Biophysical Methods in Food Research, Critical Reports on Applied Chemistry Vol 5; SCI Blackwell; Oxford, 1984; pp 138–199.

    Google Scholar 

  44. de Saint-Aubert, C., Sworn, G., & and Jun Kayashita, J. (2012). Comparison of 2 tests used for the classification of food thickeners in the management of dysphagia. In, Gums and Stabilisers for the Food Industry 17, P.A. Williams and G.O. Phillips (Eds.), RSC, Cambridge, pp 359–368.

    Google Scholar 

  45. Sasaki, C.T., & Leder, S.B. (2015). Comments on selected recent dysphagia literature. Dysphagia, 30, 482–487.

    Article  Google Scholar 

  46. Seo, C-W., & Yoo, B. (2013). Steady and dynamic shear rheological properties of gum-based food thickeners used for diet modification of patients with dysphagia: Effect of concentration. Dysphagia, 28, 205–29.

    Article  Google Scholar 

  47. Shama, F., and Sherman, P. (1973). Identification of stimuli controlling the sensory evaluation of viscosity. II. Oral methods. J Text. Stud., 4, 91.

    Google Scholar 

  48. Sliwinski, E.L., La Faille, S., & Oudhuis, L.A.C.M. (2009). Effect of human saliva on the consistency of thickened foods for patients with dysphagia. Clinical Nutrition Supplements, 4, 135.

    Article  Google Scholar 

  49. Smith, T.L., Sun, M.M., and Pippin J. (2004). Characterising process control of fluid viscosities in nursing homes. J. Am. Diet. Assoc., 104, 969.

    Article  Google Scholar 

  50. Standing, M., Qazi, A., Nystrom, M., Berta, M., Burlow, M., & Ekberg, O. (2015) Effect of shear vs extensional flow during swallowing. Annual Transactions of the Nordic Rheology Society, 23, 63–65.

    Google Scholar 

  51. Steele, C.M., Alsanei, W.A., Ayanikalath, S., Barbon, C.E.A., Chen, J., Cichero, J.A.Y., Coutts, K., Dantas, R.O., Duivestein, J., Giosa, L., Hanson, B., Lam, P., Lecko, C., Leigh, C., Nagy, A., Namasivayam, A.M., Nascimento, W.V., Odendaal, I., Smith, C.H., & Wang, H. (2015). The influence of food texture and liquid consistency modification on swallowing physiology and function: A Systematic Review. Dysphagia, 30, 2–26.

    Article  Google Scholar 

  52. Sworn, G. (2007). Natural thickeners. In, Handbook of Industrial Water Soluble Polymers, Edited by P. A. Williams, Blackwell Publishing Limited, Oxford, pp 10–31.

    Chapter  Google Scholar 

  53. Sworn, G., Kerdavid, E. and Fayos, J. (2008). The role of hydrocolloids in the management of dysphagia. In, Gums and Stabilisers for the Food Industry 14, P.A. Williams and G.O. Phillips (Eds.), RSC, Cambridge, pp 392–401.

    Google Scholar 

  54. Tashiro, A., Hasegawa, A., Kohyama, K., Kumagai, H., & Kumagai, H. (2010). Relationship between the rheological properties of thickened solutions and their velocity through the pharynx as measured by ultrasonic pulse Doppler method. Biosci. Biotechnlo. Biochem., 74, 8, 1598–1605.

    Article  CAS  Google Scholar 

  55. Wendin, K., Ekman, S., Bulow, M., Ekberg, O., Johansson, D., Rothenberg, E., & Stading, M. (2010). Objective and quantitative definitions of modified food textures based on sensory and rheological methodology. Food & Nutrition Research, 54, 5134.

    Google Scholar 

  56. Wood,F.W. (1968). SCI Monograph No. 27: Rheology and texture of foodstuffs. 40.

    Google Scholar 

  57. Yamagata, Y., Izumi, A., Egashira, F., Miyamoto, K., & Kayashita, J. (2012). Determination of a suitable shear rate for thickened liquids easy for the elderly to swallow. Food Sci. technol. Res., 18, 3, 363–369.

    Article  Google Scholar 

Download references

Acknowledgements

I thank my colleague Professor Niall Young for helpful discussions and critically reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham Sworn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan

About this chapter

Cite this chapter

Sworn, G. (2017). Rheology Modifiers for the Management of Dysphagia. In: Kaneda, I. (eds) Rheology of Biological Soft Matter. Soft and Biological Matter. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56080-7_9

Download citation

Publish with us

Policies and ethics