Skip to main content

Leber Congenital Amaurosis/Early-Onset Retinal Dystrophy in Japanese Population

  • Chapter
  • First Online:
Advances in Vision Research, Volume I

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

  • 936 Accesses

Abstract

The purpose of this chapter is to summarize the evidence on the correlations between the clinical features of Leber congenital amaurosis/early-onset retinal dystrophy (LCA/EORD) and the causative genes and to present the clinical characteristics of representative cases for each causative gene. Twenty-five genes are known causes of LCA/EORD: GUCY2D, RPE65, SPATA7, AIPL1, LCA5, RPGRIP1, CRX, CRB1, NMNAT1, CEP290, IMPDH1, RD3, RDH12, LRAT, TULP1, KCNJ13, GDF6, PRPH2, OTX2, IQCB1, IFT140, PNPLA6, PEX1, CABP4, and MERTK. Among these, the genes found in Japanese patients are GUCY2D, RPE65, RPGRIP1, CRX, CRB1, NMNAT1, IMPDH1, and RDH12. Most mutations discovered in Japanese patients have not been reported in other ethnic populations. Moreover, recent publications on genetic investigations in large cohort of Chinese patients with LCA/EORD revealed genetic characteristics different from those of the European/American populations. These results suggest that further genetic investigations on Japanese/Asian populations are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aboshiha J, Dubis AM, van der Spuy J, et al. Preserved outer retina in AIPL1 Leber’s congenital amaurosis: implications for gene therapy. Ophthalmology. 2015;122:862–4.

    Google Scholar 

  2. Aldahmesh MA, Al-Owain M, Alqahtani F, Hazzaa S, Alkuraya FS. A null mutation in CABP4 causes Leber’s congenital amaurosis-like phenotype. Mol Vis. 2010;16:207–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Araki T, Sasaki Y, Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science. 2004;305:1010–3.

    Article  CAS  PubMed  Google Scholar 

  4. Arikawa K, Molday LL, Molday RS, Williams DS. Localization of peripherin/rds in the disk membranes of cone and rod photoreceptors: relationship to disk membrane morphogenesis and retinal degeneration. J Cell Biol. 1992;116:659–67.

    Article  CAS  PubMed  Google Scholar 

  5. Asai-Coakwell M, March L, Dai XH, et al. Contribution of growth differentiation factor 6-dependent cell survival to early-onset retinal dystrophies. Hum Mol Genet. 2013;22:1432–42.

    Google Scholar 

  6. Avery MA, Sheehan AE, Kerr KS, Wang J, Freeman MR. WldS requires Nmnat1 enzymatic activity and N16-VCP interactions to suppress Wallerian degeneration. J Cell Biol. 2009;184:501–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Azadi S, Molday LL, Molday RS. RD3, the protein associated with Leber congenital amaurosis type 12, is required for guanylate cyclase trafficking in photoreceptor cells. Proc Natl Acad Sci U S A. 2010;107:21158–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bainbridge JW, Smith AJ, Barker SS, et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med. 2008;358:2231–9.

    Google Scholar 

  9. Bainbridge JW, Mehat MS, Sundaram V, et al. Long-term effect of gene therapy on Leber’s congenital amaurosis. N Engl J Med. 2015;372:1887–97.

    Google Scholar 

  10. Baker K, Beales PL. Making sense of cilia in disease: the human ciliopathies. Am J Med Genet C: Semin Med Genet. 2009;15:281–95.

    Article  Google Scholar 

  11. Boldt K, Mans DA, Won J, et al. Disruption of intraflagellar protein transport in photoreceptor cilia causes Leber congenital amaurosis in humans and mice. J Clin Invest. 2011;121:2169–80.

    Google Scholar 

  12. Bowne SJ, Sullivan LS, Mortimer SE, et al. Spectrum and frequency of mutations in IMPDH1 associated with autosomal dominant retinitis pigmentosa and Leber congenital amaurosis. Invest Ophthalmol Vis Sci. 2006;47:34–42.

    Google Scholar 

  13. Boye SE. Leber congenital amaurosis caused by mutations in GUCY2D. Cold Spring Harb Perspect Med. 2015;5:a017350.

    Article  PubMed Central  Google Scholar 

  14. Caberoy NB, Maiguel D, Kim Y, Li W. Identification of tubby and tubby-like protein 1 as eat-me signals by phage display. Exp Cell Res. 2010;316:245–57.

    Article  CAS  PubMed  Google Scholar 

  15. Caberoy NB, Zhou Y, Li W. Tubby and tubby-like protein 1 are new MerTK ligands for phagocytosis. EMBO J. 2010;29:3898–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chang B, Khanna H, Hawes N, et al. In-frame deletion in a novel centrosomal/ciliary protein CEP290/NPHP6 perturbs its interaction with RPGR and results in early-onset retinal degeneration in the rd16 mouse. Hum Mol Genet. 2006;15:1847–57.

    Google Scholar 

  17. Chen Y, Zhang Q, Shen T, et al. Comprehensive mutation analysis by whole-exome sequencing in 41 Chinese families with Leber congenital amaurosis. Invest Ophthalmol Vis Sci. 2013;54:4351–7.

    Google Scholar 

  18. Cole DG, Snell WJ. Snapshot: intraflagellar transport. Cell. 2009;137:784.

    Article  CAS  PubMed  Google Scholar 

  19. Collart FR, Huberman E. Cloning and sequence analysis of the human and Chinese hamster inosine-5′-monophosphate dehydrogenase cDNAs. J Biol Chem. 1988;263:15769–72.

    CAS  PubMed  Google Scholar 

  20. Coppieters F, Todeschini AL, Fujimaki T, et al. Hidden genetic variation in LCA9-associated congenital blindness explained by 5′UTR mutations and copy-number variations of NMNAT1. Hum Mutat. 2015;28:22899.

    Google Scholar 

  21. Corton M, Avila-Fernandez A, Vallesp NE, et al. Involvement of LCA5 in Leber congenital amaurosis and retinitis pigmentosa in the Spanish population. Ophthalmology. 2014;121:399–407.

    Google Scholar 

  22. Daiger SP, Sullivan LS, Bowne SJ. RetNetâ„¢ retinal information network [Online]. Houston: The University of Texas Health Science Center; 2017. https://sph.uth.edu/retnet/. Accessed 14 Feb 2017.

  23. den Hollander AI, Heckenlively JR, van den Born LI, et al. Leber congenital amaurosis and retinitis pigmentosa with Coats-like exudative vasculopathy are associated with mutations in the crumbs homologue 1 (CRB1) gene. Am J Hum Genet. 2001;69:198–203.

    Google Scholar 

  24. den Hollander AI, Roepman R, Koenekoop RK, Cremers FP. Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog Retin Eye Res. 2008;27:391–419.

    Article  CAS  PubMed  Google Scholar 

  25. Dev Borman A, Ocaka LA, Mackay DS, et al. Early onset retinal dystrophy due to mutations in LRAT: molecular analysis and detailed phenotypic study. Invest Ophthalmol Vis Sci. 2012;53:3927–38.

    Google Scholar 

  26. Dharmaraj S, Li Y, Robitaille JM, et al. A novel locus for Leber congenital amaurosis maps to chromosome 6q. Am J Hum Genet. 2000;66:319–26.

    Google Scholar 

  27. Dharmaraj S, Silva E, Pina AL, et al. Mutational analysis and clinical correlation in Leber congenital amaurosis. Ophthalmic Genet. 2000;21:135–50.

    Google Scholar 

  28. Dryja TP, Adams SM, Grimsby JL, et al. Null RPGRIP1 alleles in patients with Leber congenital amaurosis. Am J Hum Genet. 2001;68:1295–8.

    Google Scholar 

  29. Ebrey T, Koutalos Y. Vertebrate photoreceptors. Prog Retin Eye Res. 2001;20:49–94.

    Article  CAS  PubMed  Google Scholar 

  30. Estrada-Cuzcano A, Koenekoop RK, Coppieters F, et al. IQCB1 mutations in patients with Leber congenital amaurosis. Invest Ophthalmol Vis Sci. 2011;52:834–9.

    Google Scholar 

  31. Finnemann SC, Silverstein RL. Differential roles of CD36 and αvβ5 integrin in photoreceptor phagocytosis by the retinal pigment epithelium. J Exp Med. 2001;194:1289–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Franceschetti A, Dieterlé P. Importance diagnostique et pronostique de l’électrorétinogramme (ERG) dans les dégénérescences tapéto-rétiniennes avec rétrécissement du champ visuel et héméralopie. Confin Neurol. 1954;14:184–6.

    Article  CAS  PubMed  Google Scholar 

  33. Franceschetti A, Forni S. Dégénérescence tapéto-rétinienne infantile (type Leber) avec aspect marbré du fond de l’œil périphérique. Ophthalmologica. 1958;135:610–6.

    Article  CAS  PubMed  Google Scholar 

  34. Furukawa T, Morrow EM, Cepko CL. Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell. 1997;91:531–41.

    Article  CAS  PubMed  Google Scholar 

  35. Haeseleer F, Imanishi Y, Maeda T, et al. Essential role of Ca2+-binding protein 4, a Cav1.4 channel regulator, in photoreceptor synaptic function. Nat Neurosci. 2004;7:1079–87.

    Google Scholar 

  36. Hanein S, Perrault I, Gerber S, et al. Leber congenital amaurosis: comprehensive survey of the genetic heterogeneity, refinement of the clinical definition, and genotype-phenotype correlations as a strategy for molecular diagnosis. Hum Mutat. 2004;23:306–17.

    Google Scholar 

  37. Henderson RH, Williamson KA, Kennedy JS, et al. A rare de novo nonsense mutation in OTX2 causes early onset retinal dystrophy and pituitary dysfunction. Mol Vis. 2009;15:2442–7.

    Google Scholar 

  38. Henderson RH, Mackay DS, Li Z, et al. Phenotypic variability in patients with retinal dystrophies due to mutations in CRB1. Br J Ophthalmol. 2011;95:811–7.

    Google Scholar 

  39. Hirose T, Lee KY, Schepens CL. Snowflake degeneration in hereditary vitreoretinal degeneration. Am J Ophthalmol. 1974;77:143–53.

    Article  CAS  PubMed  Google Scholar 

  40. Hosono K, Harada Y, Kurata K, et al. Novel GUCY2D gene mutations in Japanese male twins with Leber congenital amaurosis. J Ophthalmol. 2015;693468:13.

    Google Scholar 

  41. Hull S, Arno G, Plagnol V, et al. The phenotypic variability of retinal dystrophies associated with mutations in CRX, with report of a novel macular dystrophy phenotype. Invest Ophthalmol Vis Sci. 2014;55:6934–44.

    Google Scholar 

  42. Jacobson SG, Cideciyan AV, Aleman TS, et al. Crumbs homolog 1 (CRB1) mutations result in a thick human retina with abnormal lamination. Hum Mol Genet. 2003;12:1073–8.

    Google Scholar 

  43. Jacobson SG, Cideciyan AV, Aleman TS, et al. Leber congenital amaurosis caused by an RPGRIP1 mutation shows treatment potential. Ophthalmology. 2007;114:895–8.

    Google Scholar 

  44. Jacobson SG, Cideciyan AV, Huang WC, et al. TULP1 mutations causing early-onset retinal degeneration: preserved but insensitive macular cones. Invest Ophthalmol Vis Sci. 2014;55:5354–64.

    Google Scholar 

  45. Jacobson SG, Cideciyan AV, Roman AJ, et al. Improvement and decline in vision with gene therapy in childhood blindness. N Engl J Med. 2015;372:1920–6.

    Google Scholar 

  46. Jang GF, Mcbee JK, Alekseev AM, Haeseleer F, Palczewski K. Stereoisomeric specificity of the retinoid cycle in the vertebrate retina. J Biol Chem. 2000;275:28128–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Katagiri S, Hayashi T, Kondo M, et al. RPE65 mutations in two Japanese families with Leber congenital amaurosis. Ophthalmic Genet. 2016;37:161–9.

    Google Scholar 

  48. Khan AO, Abu-Safieh L, Eisenberger T, Bolz HJ, Alkuraya FS. The RPGRIP1-related retinal phenotype in children. Br J Ophthalmol. 2013;97:760–4.

    Article  PubMed  Google Scholar 

  49. Khan AO, Alrashed M, Alkuraya FS. Clinical characterisation of the CABP4-related retinal phenotype. Br J Ophthalmol. 2013;97:262–5.

    Article  PubMed  Google Scholar 

  50. Khan AO, Bolz HJ, Bergmann C. Early-onset severe retinal dystrophy as the initial presentation of IFT140-related skeletal ciliopathy. J Aapos. 2014;18:203–5.

    Article  PubMed  Google Scholar 

  51. Kirschman LT, Kolandaivelu S, Frederick JM, et al. The Leber congenital amaurosis protein, AIPL1, is needed for the viability and functioning of cone photoreceptor cells. Hum Mol Genet. 2010;19:1076–87.

    Article  CAS  PubMed  Google Scholar 

  52. Kmoch S, Majewski J, Ramamurthy V, et al. Mutations in PNPLA6 are linked to photoreceptor degeneration and various forms of childhood blindness. Nat Commun. 2015:6–5614.

    Google Scholar 

  53. Koenekoop RK, Loyer M, Dembinska O, Beneish R. Visual improvement in Leber congenital amaurosis and the CRX genotype. Ophthalmic Genet. 2002;23:49–59.

    Article  PubMed  Google Scholar 

  54. Koenekoop RK. An overview of Leber congenital amaurosis: a model to understand human retinal development. Surv Ophthalmol. 2004;49:379–98.

    Article  PubMed  Google Scholar 

  55. Koenekoop RK, Wang H, Majewski J, et al. Mutations in NMNAT1 cause Leber congenital amaurosis and identify a new disease pathway for retinal degeneration. Nat Genet. 2012;44:1035–9.

    Google Scholar 

  56. Koike C, Nishida A, Ueno S, et al. Functional roles of Otx2 transcription factor in postnatal mouse retinal development. Mol Cell Biol. 2007;27:8318–29.

    Google Scholar 

  57. Kuniyoshi K, Sakuramoto H, Yoshitake K, et al. Longitudinal clinical course of three Japanese patients with Leber congenital amaurosis/early-onset retinal dystrophy with RDH12 mutation. Doc Ophthalmol. 2014;128:219–28.

    Google Scholar 

  58. Kuniyoshi K, Ikeo K, Sakuramoto H, et al. Novel nonsense and splice site mutations in CRB1 gene in two Japanese patients with early-onset retinal dystrophy. Doc Ophthalmol. 2015;130:49–55.

    Google Scholar 

  59. Kusaka S, Inanobe A, Fujita A, et al. Functional Kir7.1 channels localized at the root of apical processes in rat retinal pigment epithelium. J Physiol. 2001;531:27–36.

    Google Scholar 

  60. Leber T. Ueber Retinitis pigmentosa und angeborene Amaurose. Graefes Arch Klin Exp Ophthalmol. 1869;15:1–25.

    Article  Google Scholar 

  61. Leber T. Ueber hereditäre und congenital-angelegte Sehnervenleiden. Graefes Arch Klin Exp Ophthalmol. 1871;17:249–91.

    Article  Google Scholar 

  62. Leber T. Die Pigmentdegeneration der Netzhaut und die mit ihr verwandten Erkrankungen. In: Saemisch T, Elschnig A, editors. Graefe-Saemisch-Hess Handbuch der gesamten Augenheilkunde. Zweite Hälfte. Leipzig: Verlag von Wilherm Engelmann; 1916.

    Google Scholar 

  63. Leskov IB, Klenchin VA, Handy JW, et al. The gain of rod phototransduction: reconciliation of biochemical and electrophysiological measurements. Neuron. 2000;27:525–37.

    Google Scholar 

  64. Li L, Xiao X, Li S, et al. Detection of variants in 15 genes in 87 unrelated Chinese patients with Leber congenital amaurosis. PLoS One. 2011;6:e19458.

    Google Scholar 

  65. Liu X, Bulgakov OV, Wen XH, et al. AIPL1, the protein that is defective in Leber congenital amaurosis, is essential for the biosynthesis of retinal rod cGMP phosphodiesterase. Proc Natl Acad Sci U S A. 2004;101:13903–8.

    Google Scholar 

  66. Loewen CJ, Molday RS. Disulfide-mediated oligomerization of peripherin/Rds and Rom-1 in photoreceptor disk membranes. Implications for photoreceptor outer segment morphogenesis and degeneration. J Biol Chem. 2000;275:5370–8.

    Article  CAS  PubMed  Google Scholar 

  67. Lotery AJ, Jacobson SG, Fishman GA, et al. Mutations in the CRB1 gene cause Leber congenital amaurosis. Arch Ophthalmol. 2001;119:415–20.

    Google Scholar 

  68. Mackay DS, Henderson RH, Sergouniotis PI, et al. Novel mutations in MERTK associated with childhood onset rod-cone dystrophy. Mol Vis. 2010;16:369–77.

    Google Scholar 

  69. Mackay DS, Dev Borman A, Moradi P, et al. RDH12 retinopathy: novel mutations and phenotypic description. Mol Vis. 2011;17:2706–16.

    Google Scholar 

  70. Maguire AM, Simonelli F, Pierce EA, et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med. 2008;358:2240–8.

    Google Scholar 

  71. Michelakakis HM, Zafeiriou DI, Moraitou MS, Gootjes J, Wanders RJ. PEX1 deficiency presenting as Leber congenital amaurosis. Pediatr Neurol. 2004;31:146–9.

    Article  PubMed  Google Scholar 

  72. Milam AH, Barakat MR, Gupta N, et al. Clinicopathologic effects of mutant GUCY2D in Leber congenital amaurosis. Ophthalmology. 2003;110:549–58.

    Google Scholar 

  73. Miyake Y. Hereditary retinal and allied diseases. In: Miyake Y, editor. Electrodiagnosis of retinal diseases. Tokyo, Japan: Springer; 2006.

    Google Scholar 

  74. Mühlig-Versen M, da Cruz AB, Tschape JA, et al. Loss of Swiss cheese/neuropathy target esterase activity causes disruption of phosphatidylcholine homeostasis and neuronal and glial death in adult Drosophila. J Neurosci. 2005;25:2865–73.

    Google Scholar 

  75. Nakamura M, Ito S, Miyake Y. Novel de novo mutation in CRX gene in a Japanese patient with Leber congenital amaurosis. Am J Ophthalmol. 2002;134:465–7.

    Article  CAS  PubMed  Google Scholar 

  76. Nakamura M. Diagnosis of congenital retinal dystrophies. In: Sato M, Kurosaka D, editors. Instruction course in ophthalmology 12. Pediatric ophthalmology. Tokyo: Medical View; 2007. [Japanese].

    Google Scholar 

  77. Nakazawa M, Kikawa E, Chida Y, Tamai M. Asn244His mutation of the peripherin/RDS gene causing autosomal dominant cone-rod degeneration. Hum Mol Genet. 1994;3:1195–6.

    Article  CAS  PubMed  Google Scholar 

  78. Nakazawa M, Wada Y, Tamai M. Macular dystrophy associated with monogenic Arg172Trp mutation of the peripherin/RDS gene in a Japanese family. Retina. 1995;15:518–23.

    Article  CAS  PubMed  Google Scholar 

  79. Neall LF, Morrison S. Genetics home reference [Online]. Bethesda: National Institute of Health, U. S. National Library Medicine®; 2017. http://ghr.nlm.nih.gov/. Accessed 14 Feb 2017

    Google Scholar 

  80. Pattnaik BR, Shahi PK, Marino MJ, et al. A novel KCNJ13 nonsense mutation and loss of Kir7.1 channel function causes Leber congenital amaurosis (LCA16). Hum Mutat. 2015;36:720–7.

    Google Scholar 

  81. Pellikka M, Tanentzapf G, Pinto M, et al. Crumbs, the Drosophila homologue of human CRB1/RP12, is essential for photoreceptor morphogenesis. Nature. 2002;416:143–9.

    Google Scholar 

  82. Perrault I, Rozet JM, Calvas P, et al. Retinal-specific guanylate cyclase gene mutations in Leber’s congenital amaurosis. Nat Genet. 1996;14:461–4.

    Google Scholar 

  83. Perrault I, Rozet JM, Gerber S, et al. Leber congenital amaurosis. Mol Genet Metab. 1999;68:200–8.

    Google Scholar 

  84. Perrault I, Hanein S, Gerber S, et al. Retinal dehydrogenase 12 (RDH12) mutations in Leber congenital amaurosis. Am J Hum Genet. 2004;75:639–46.

    Google Scholar 

  85. Perrault I, Hanein S, Gerber S, et al. A novel mutation in the GUCY2D gene responsible for an early onset severe RP different from the usual GUCY2D-LCA phenotype. Hum Mutat. 2005;25:222.

    Google Scholar 

  86. Perrault I, Delphin N, Hanein S, et al. Spectrum of NPHP6/CEP290 mutations in Leber congenital amaurosis and delineation of the associated phenotype. Hum Mutat. 2007;28:416.

    Google Scholar 

  87. Perrault I, Hanein S, Zanlonghi X, et al. Mutations in NMNAT1 cause Leber congenital amaurosis with early-onset severe macular and optic atrophy. Nat Genet. 2012;44:975–7.

    Google Scholar 

  88. Perrault I, Saunier S, Hanein S, et al. Mainzer-Saldino syndrome is a ciliopathy caused by IFT140 mutations. Am J Hum Genet. 2012;90:864–70.

    Google Scholar 

  89. Perrault I, Estrada-Cuzcano A, Lopez I, et al. Union makes strength: a worldwide collaborative genetic and clinical study to provide a comprehensive survey of RD3 mutations and delineate the associated phenotype. PLoS One. 2013;8:e51622.

    Google Scholar 

  90. Peshenko IV, Dizhoor AM. Guanylyl cyclase-activating proteins (GCAPs) are Ca2+/Mg2+ sensors: implications for photoreceptor guanylyl cyclase (RetGC) regulation in mammalian photoreceptors. J Biol Chem. 2004;279:16903–6.

    Article  CAS  PubMed  Google Scholar 

  91. Preising MN, Hausotter-Will N, Solbach MC, Friedburg CR, Schendorf F, Lorenz B. Mutations in RD3 are associated with an extremely rare and severe form of early onset retinal dystrophy. Invest Ophthalmol Vis Sci. 2012;53:3463–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ragge NK, Brown AG, Poloschek CM, et al. Heterozygous mutations of OTX2 cause severe ocular malformations. Am J Hum Genet. 2005;76:1008–22.

    Google Scholar 

  93. Rivolta C, Berson EL, Dryja TP. Dominant Leber congenital amaurosis, cone-rod degeneration, and retinitis pigmentosa caused by mutant versions of the transcription factor CRX. Hum Mutat. 2001;18:488–98.

    Article  CAS  PubMed  Google Scholar 

  94. Roosing S, van den Born LI, Hoyng CB, et al. Maternal uniparental isodisomy of chromosome 6 reveals a TULP1 mutation as a novel cause of cone dysfunction. Ophthalmology. 2013;120:1239–46.

    Google Scholar 

  95. Saari JC. Biochemistry of visual pigment regeneration: the Friedenwald lecture. Invest Ophthalmol Vis Sci. 2000;41:337–48.

    CAS  PubMed  Google Scholar 

  96. Schäfer T, Pütz M, Lienkamp S, et al. Genetic and physical interaction between the NPHP5 and NPHP6 gene products. Hum Mol Genet. 2008;17:3655–62.

    Google Scholar 

  97. Schmidts M, Frank V, Eisenberger T, et al. Combined NGS approaches identify mutations in the intraflagellar transport gene IFT140 in skeletal ciliopathies with early progressive kidney Disease. Hum Mutat. 2013;34:714–24.

    Google Scholar 

  98. Seong MW, Kim SY, Yu YS, Hwang JM, Kim JY, Park SS. Molecular characterization of Leber congenital amaurosis in Koreans. Mol Vis. 2008;14:1429–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Seong MW, Kim SY, Yu YS, Hwang JM, Kim JY, Park SS. LCA5, a rare genetic cause of leber congenital amaurosis in Koreans. Ophthalmic Genet. 2009;30:54–5.

    Article  CAS  PubMed  Google Scholar 

  100. Sergouniotis PI, Davidson AE, Mackay DS, et al. Recessive mutations in KCNJ13, encoding an inwardly rectifying potassium channel subunit, cause Leber congenital amaurosis. Am J Hum Genet. 2011;89:183–90.

    Google Scholar 

  101. Sohocki MM, Bowne SJ, Sullivan LS, et al. Mutations in a new photoreceptor-pineal gene on 17p cause Leber congenital amaurosis. Nat Genet. 2000;24:79–83.

    Google Scholar 

  102. Stone EM. Leber congenital amaurosis – a model for efficient genetic testing of heterogeneous disorders: LXIV Edward Jackson Memorial Lecture. Am J Ophthalmol. 2007;144:791–811.

    Article  CAS  PubMed  Google Scholar 

  103. Stone EM, Cideciyan AV, Aleman TS, et al. Variations in NPHP5 in patients with nonsyndromic Leber congenital amaurosis and Senior-Loken syndrome. Arch Ophthalmol. 2011;129:81–7.

    Google Scholar 

  104. Suzuki T, Fujimaki T, Yanagawa A, et al. A novel exon 17 deletion mutation of RPGRIP1 gene in two siblings with Leber congenital amaurosis. Jpn J Ophthalmol. 2014;58:528–35.

    Google Scholar 

  105. Sweeney MO, Mcgee TL, Berson EL, Dryja TP. Low prevalence of LRAT mutations in patients with Leber congenital amaurosis and autosomal recessive retinitis pigmentosa. Mol Vis. 2007;13:588–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Takahashi Y, Moiseyev G, Chen Y, Nikolaeva O, Ma JX. An alternative isomerohydrolase in the retinal Müller cells of a cone-dominant species. FEBS J. 2011;278:2913–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Testa F, Maguire AM, Rossi S, et al. Three-year follow-up after unilateral subretinal delivery of adeno-associated virus in patients with Leber congenital amaurosis type 2. Ophthalmology. 2013;120:1283–91.

    Google Scholar 

  108. Thompson DA, Li Y, McHenry CL, et al. Mutations in the gene encoding lecithin retinol acyltransferase are associated with early-onset severe retinal dystrophy. Nat Genet. 2001;28:123–4.

    Google Scholar 

  109. van Rossum AG, Aartsen WM, Meuleman J, et al. Pals1/Mpp5 is required for correct localization of Crb1 at the subapical region in polarized Müller glia cells. Hum Mol Genet. 2006;15:2659–72.

    Google Scholar 

  110. Wada Y, Nakazawa M, Abe T, Fuse N, Tamai M. Clinical variability of patients associated with gene mutations of visual cycle protein; arrestin, RPE65 and RDH5 genes. Invest Ophthalmol Vis Sci. 2000;41:S617.

    Google Scholar 

  111. Wada Y, Sandberg MA, McGee TL, Stillberger MA, Berson EL, Dryja TP. Screen of the IMPDH1 gene among patients with dominant retinitis pigmentosa and clinical features associated with the most common mutation, Asp226Asn. Invest Ophthalmol Vis Sci. 2005;46:1735–41.

    Article  PubMed  Google Scholar 

  112. Wada Y, Tada A, Itabashi T, Kawamura M, Sato H, Tamai M. Screening for mutations in the IMPDH1 gene in Japanese patients with autosomal dominant retinitis pigmentosa. Am J Ophthalmol. 2005;140:163–5.

    Article  CAS  PubMed  Google Scholar 

  113. Wang H, den Hollander AI, Moayedi Y, et al. Mutations in SPATA7 cause Leber congenital amaurosis and juvenile retinitis pigmentosa. Am J Hum Genet. 2009;84:380–7.

    Google Scholar 

  114. Wang H, Wang X, Zou X, et al. Comprehensive molecular diagnosis of a large Chinese Leber congenital amaurosis cohort. Invest Ophthalmol Vis Sci. 2015;56:3642–55.

    Google Scholar 

  115. Wang X, Wang H, Sun V, et al. Comprehensive molecular diagnosis of 179 Leber congenital amaurosis and juvenile retinitis pigmentosa patients by targeted next generation sequencing. J Med Genet. 2013;50:674–88.

    Google Scholar 

  116. Weleber RG. Infantile and childhood retinal blindness: a molecular perspective (The Franceschetti Lecture). Ophthalmic Genet. 2002;23:71–97.

    Article  PubMed  Google Scholar 

  117. Weleber RG, Michaelides M, Trzupek KM, Stover NB, Stone EM. The phenotype of severe early childhood onset retinal dystrophy (SECORD) from mutation of RPE65 and differentiation from Leber congenital amaurosis. Invest Ophthalmol Vis Sci. 2011;52:292–302.

    Article  CAS  PubMed  Google Scholar 

  118. Weleber RG, Francis P, Trzupek KM, Beattie C. Leber congenital amaurosis. In: Pagon RA, Adam MP, Ardinger HM, et al., editors. GeneReviews®. Seattle: University of Washington; 2013. https://www.ncbi.nlm.nih.gov/books/NBK1298/. Accessed 14 Feb 2017.

    Google Scholar 

  119. Xi Q, Pauer GJ, Ball SL, et al. Interaction between the photoreceptor-specific tubby-like protein 1 and the neuronal-specific GTPase dynamin-1. Invest Ophthalmol Vis Sci. 2007;48:2837–44.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Zhao Y, Hong DH, Pawlyk B, et al. The retinitis pigmentosa GTPase regulator (RPGR)- interacting protein: subserving RPGR function and participating in disk morphogenesis. Proc Natl Acad Sci U S A. 2003;100:3965–70.

    Google Scholar 

  121. Zou X, Yao F, Liang X, et al. De novo mutations in the cone-rod homeobox gene associated with Leber congenital amaurosis in Chinese patients. Ophthalmic Genet. 2015;36:21–6.

    Google Scholar 

Download references

Acknowledgments

The author, Kazuki Kuniyoshi, expresses gratitude to Takaaki Hayashi, MD; Mineo Kondo, MD; Satoshi Katagiri, MD; Hiroshi Tsuneoka, MD; Takuro Fujimaki, MD; Takahide Suzuki, MD; Akira Murakami, MD; Makoto Nakamura, MD; Yoshihiro Hotta, MD; and Katsuhiro Hosono, MD, for providing clinical data on Japanese patients with LCA/EORD including their fundus photographs (Figs. 13.2, 13.3 and 13.4). The author thanks Professor Emeritus Duco I. Hamasaki of the Bascom Palmer Eye Institute of the University of Miami for critical discussion and final manuscript editing. This work was supported in part by grant to Takeshi Iwata, MD, from the Japan Agency for Medical Research and Development (Practical Research Project for Rare/Intractable Diseases, 26310601).

Conflict of Interest

The authors Kazuki Kuniyoshi and Yoshikazu Shimomura declare of no conflict of interest for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuki Kuniyoshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Kuniyoshi, K., Shimomura, Y. (2017). Leber Congenital Amaurosis/Early-Onset Retinal Dystrophy in Japanese Population. In: Prakash, G., Iwata, T. (eds) Advances in Vision Research, Volume I. Essentials in Ophthalmology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56511-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56511-6_13

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56509-3

  • Online ISBN: 978-4-431-56511-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics