Skip to main content

STM Vortex Core Spectroscopy and Non-BCS Pairing in High Temperature Superconductors

  • Conference paper
Advances in Superconductivity XI

Abstract

We present scanning tunneling spectroscopy (STS) investigations of high temperature superconductors illustrating the very unusual characteristics of the superconducting gap, and the intimate relation existing between the superconducting and the normal-state gap (pseudogap). A unique feature of STS is to probe the local density of quasiparticle states bound to individual vortices. The vortex core spectroscopy sheds new light on the pseudogap and the microscopic nature of HTS. The experiments reviewed here suggest that HTS are in a regime very different from BCS, approaching the crossover to Bose-Einstein condensation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bednorz JG, Müller KA (1986) Z. Phys B64: 189–193

    Article  ADS  Google Scholar 

  2. Loeser AG, Shen ZX, Dessau DS, Marshall DS, Park CH, Fournier P, Kapitulnik A (1996) Science 273: 325–329.

    Article  ADS  Google Scholar 

  3. Ding H, Yokoya T, Campuzano JC, Takahashi T, Randeria M, Norman MR, Mochiku T, Kadowaki K, Giapintzakis J (1996) Nature 382: 51–54

    Article  ADS  Google Scholar 

  4. Renner Ch, Revaz B, Genoud JY, Kadowaki K, Fischer O (1998) Phys.Rev.Lett. 80: 149–152

    Article  ADS  Google Scholar 

  5. Tao HJ, Lu Farun, Wolf EL (1997) Physica C282–287: 1507–1508

    Google Scholar 

  6. Gupta AK, Ng KW (1998) Phys.Rev. B 58: R8901–R8904

    ADS  Google Scholar 

  7. Williams GVM, Talion JL, Haines EM, Michalak R, Dupree R (1997) Phys.Rev.Lett. 78: 721–724

    Article  ADS  Google Scholar 

  8. Renner Ch, et al. (1990) J.Vac.Sci.Technol. A8: 330–332

    ADS  Google Scholar 

  9. Kent AD, et al. (1992) Ultrami-croscopy 42–44: 1632–1637

    Article  Google Scholar 

  10. Erb A, Walker E, Fliikiger R (1996) Physica C 258: 9–12

    ADS  Google Scholar 

  11. Miyakawa N, Guptasarma P, Zasadzinski JF, Hinks DG, Gray KE (1998), Phys.Rev.Lett. 80: 157–160

    Article  ADS  Google Scholar 

  12. Oda M, Hoya K, Kubota R, Manabe C, Momono N, Nakano T, Ido M (1997) Physica C282–287: 1499–1500

    Google Scholar 

  13. Maggio-Aprile I, Renner Ch, Erb A, Wlaker E, and Fischer Ø (1995) Phys.Rev.Lett. 75: 2754–2757

    Article  ADS  Google Scholar 

  14. Caroli C, de Gennes PG, Matricon J (1964) Phys.Lett. 9: 307–309

    Article  ADS  MATH  Google Scholar 

  15. Renner Ch, Kent AD, Niedermann Ph, Fischer Ø (1991) Phys.Rev.Lett. 67: 1650–1652

    Article  ADS  Google Scholar 

  16. Hess HF, Robinson RB, Dynes RC, Vallès JM Jr, Waszczak JV (1989) Phys.Rev.Lett. 62: 214–217

    Article  ADS  Google Scholar 

  17. Renner Ch, Revaz B, Kadowaki K, Maggio-Aprile I, Fischer Ø (1998) Phys.Rev.Lett. 80: 3606–3609

    Article  ADS  Google Scholar 

  18. Wang Y, Mc Donald AH (1995) Phys.Rev. B52: R3876–R3879

    ADS  Google Scholar 

  19. Morita Y, Kohmoto M, Maki K (1997) Phys.Rev.Lett. 78: 4841–4844

    Article  ADS  Google Scholar 

  20. Himeda A, Ogata M, Tanaka Y, Kashiwaya S (1997) Physica C 282–287: 1521–1522

    Google Scholar 

  21. Franz M, Tesanovic Z (1998) Phys.Rev.Lett. 80: 4763–4766

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Japan

About this paper

Cite this paper

Renner, C. et al. (1999). STM Vortex Core Spectroscopy and Non-BCS Pairing in High Temperature Superconductors. In: Koshizuka, N., Tajima, S. (eds) Advances in Superconductivity XI. Springer, Tokyo. https://doi.org/10.1007/978-4-431-66874-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-66874-9_29

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-66876-3

  • Online ISBN: 978-4-431-66874-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics