Skip to main content

Experimental Therapy for Malignant Brain Tumors Using Genetically Engineered Herpes Simplex Virus Type 1

  • Conference paper
Brain Tumor

Abstract

We are exploring a novel experimental treatment for malignant brain tumors utilizing a genetically engineered, attenuated, replication-competent herpes simplex virus type 1 (HSV-1). Our previous studies demonstrated that a thymidine kinase-deficient HSV-1 mutant (dlsptk) could destroy human glioma cells in an animal brain tumor model. This HSV-1 mutant has a 360-base pair deletion in the thymidine kinase gene, allowing for replication in dividing tumor cells but not in nondividing cells. We hypothesized that such HSV-1 mutants might replicate in actively growing tumor cells and effectively kill malignant brain tumors while sparing normal brain cells. So that this therapy could become an effective clinical choice, we have examined different HSV-1 mutants. We tested a ribonucleotide reductase-deficient mutant as an experimental treatment for malignant brain tumors. The HSV-1 mutant hrR3, containing Escherichia coli lacZ gene in the ICP6 gene that encodes the large subunit of ribonucleotide reductase, is hypersensitive to antiherpetic agents acyclovir and ganciclovir while dlsptk is resistant. We have demonstrated that hrR3 destroyed human glioblastoma cells in vitro and in vivo as well as dlsptk. These results have stimulated interest in the possible clinical trial of hrR3 for the treatment of malignant brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Walker MD, Green SB, Byar DP (1980) Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. N Engl J Med 303:1323–1329

    Article  PubMed  CAS  Google Scholar 

  2. Mahaley MS, Mettlin C, Natarajan N, et al (1989) National survey of patterns of care for brain-tumor patients. J Neurosurg 71:826–836

    Article  PubMed  Google Scholar 

  3. Kim TS, Halliday AL, Headley-Whyte ET, et al (1991) Correlates of survival and the Daumas-Duport grading system for astrocytomas. J Neurosurg 74:27–37

    Article  PubMed  CAS  Google Scholar 

  4. Schoenberg BS (1983) The epidemiology of central nervous system tumors. In: Wlaker MD (ed) Oncology of the nervous system. Nijhoff, Boston, pp 1–30

    Chapter  Google Scholar 

  5. Taylor MW, Cordell B, Souhrada M, et al (1971) Viruses as an aid to cancer therapy: regression of solid and ascites tumors in rodents after treatment with bovine enterovirus. Proc Natl Acad Sci USA 68:836–840

    Article  PubMed  CAS  Google Scholar 

  6. Kobayashi H (1979) Viral xenogenization of intact tumor cells. Adv Cancer Res 30:279–299

    Article  PubMed  CAS  Google Scholar 

  7. Cassel WA, Murray DR, Phillips HS (1983) A phase II study on the postsurgical management of stage II malignant melanoma with a newcastle disease virus oncolysate. Cancer 52:856–860

    Article  PubMed  CAS  Google Scholar 

  8. Short MP, Choi BC, Lee JK, et al (1990) Gene delivery to glioma cells in rat brain by grafting of a retrovirus packaging cell line. J Neurosci Res 27:427–439

    Article  PubMed  CAS  Google Scholar 

  9. Takamiya Y, Short MP, Ezzenddine ZD, et al (1992) Gene therapy of malignant brain tumors: a rat glioma line bearing the herpes simplex virus type 1-thymidine kinase gene and wild type retrovirus kills other tumor cells. J Neurosci Res 33:493–503

    Article  PubMed  CAS  Google Scholar 

  10. Takamiya Y, Short MP, Moolten FL, et al (1993) An experimental model of retrovirus gene therapy for malignant brain tumors. J Neurosurg 79:104–110

    Article  PubMed  CAS  Google Scholar 

  11. Culver KW, Ram Z, Walbridge S, et al (1992) In vivo gene transfer with retroviral vectorproducer cells for treatment of experimental brain tumors. Science 256:1550–1552

    Article  PubMed  CAS  Google Scholar 

  12. Ram Z, Culver KW, Walbridge S, et al (1993) In situ retroviral-mediated gene transfer for the treatment of brain tumors in rats. Cancer Res 53:83–88

    PubMed  CAS  Google Scholar 

  13. Martuza RL, Malick A, Markert JM, et al (1991) Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 252:854–856

    Article  PubMed  CAS  Google Scholar 

  14. Markert JM, Coen DM, Malick A, et al (1992) Expanded spectrum of viral therapy in the treatment of nervous system tumors. J Neurosurg 77:590–594

    Article  PubMed  CAS  Google Scholar 

  15. Mineta T, Rabkin SD, Martuza RL (1994) Treatment of malignant glioma using ganciclovirhypersensitive, ribonucleotide reductase-deficient herpes simplex viral mutant. Cancer Res 54:3963–3966

    PubMed  CAS  Google Scholar 

  16. Coen DM, Kosz-Vnenchak M, Jacobson JG, et al (1989) Thymidine kinase-negative herpes simplex virus mutants establish latency in mouse trigeminal ganglia but do not reactivate. Proc Natl Ac-a d Sci USA 86:4736–4740

    Article  CAS  Google Scholar 

  17. Field HJ, Wildy P (1978) The pathogenicity of thymidine kinase-deficient mutants of herpes simplex virus in mice. J Hyg Camb (Lond) 81:267–277

    Article  CAS  Google Scholar 

  18. Field HJ, Darby G (1980) Pathogenicity in mice of strains of herpes simplex virus which are resistant to acyclovir in vitro and in vivo. Antimicrob Agents Chemother 17:209–216

    Article  PubMed  CAS  Google Scholar 

  19. Duita BM (1983) Ribonucleotide reductase induced by herpes simplex virus has a virusspecific constituent. J Gen Virol 64:513–521

    Article  Google Scholar 

  20. Thelander L, Reichard P (1979) Reduction of ribonucleotide. Annu Rev Biochem 48:133–158

    Article  PubMed  CAS  Google Scholar 

  21. Preston VG, Palfreyman JW, Duita BM (1984) Identification of a herpes simplex virus type 1 polypeptide which is a component of the virus-induced ribonucleotide reductase. J Gen Virol 65:1457–1466

    Article  PubMed  CAS  Google Scholar 

  22. Goldstein DJ, Weller SK (1988) Herpes simplex virus type 1-induced ribonucleotide reductase activity is dispensable for virus growth and DNA synthesis: isolation and characterization of an ICP6 lacZ insertion mutant. J Virol 62:196–205

    PubMed  CAS  Google Scholar 

  23. Goldstein DJ, Weller SK (1988) Factor(s) present in herpes simplex virus type 1-infected cells can compensate for the loss of the large subunit of the viral ribonucleotide reductase: characterization of an ICP6 deletion mutant. Virology 166:41–51

    Article  PubMed  CAS  Google Scholar 

  24. Jacobson JG, Leib DA, Goldstein DJ, et al (1989) A herpes simplex virus ribonucleotide reductase deletion mutant is defective for productive acute and reactivable latent infections of mice and for replication in mouse cells. Virology 173:276–283

    Article  PubMed  CAS  Google Scholar 

  25. Cameron JM, McDougall I, Marsden HS, et al (1988) Ribonucleotide reductase encoded by herpes simplex virus is a determinant of the pathogenicity of the virus in mice and a valid antiviral target. J Gen Virol 69:2607–2612

    Article  PubMed  CAS  Google Scholar 

  26. Coen DM, Goldstein DJ, Weller SK (1989) Herpes simplex virus ribonucleotide reductase mutants are hypersensitive to acyclovir. Antimicrob Agents Chemother 33:1395–1399

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Japan

About this paper

Cite this paper

Mineta, T., Rabkin, S.D., Martuza, R.L. (1996). Experimental Therapy for Malignant Brain Tumors Using Genetically Engineered Herpes Simplex Virus Type 1. In: Nagai, M. (eds) Brain Tumor. Springer, Tokyo. https://doi.org/10.1007/978-4-431-66887-9_42

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-66887-9_42

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-66889-3

  • Online ISBN: 978-4-431-66887-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics